Wastewater Treatment Options for the Biomass-To-Ethanol Process

Presented to:
National Renewable Energy
Laboratory

By:
Merrick & Company

10/22/1998

Task 6

Subcontract No. AXE-8-18020-01

Merrick Project No. 19013104

DRAFT REPORT TABLE OF CONTENTS

Introduction

Waste Water Treatment Processes

I. II.

III.	Evaporator Syrup Dis	spositio	1
IV.	Flow and Strength of	Waste '	Water
V.	Waste Water / Sludge	e Proces	sing
VI.	Evaporation		
VII.	Irrigation		
VIII.	Treatment Alternativ	es	
IX.	Suggested Treatment	Options	S
X.	Effluent Quality		
XI.	Aspen Model		
XII.	Treatment of Anaero	bic Off	Gas
XIII.	Plant On-stream Fact	or	
XIV.	General Plant		
XV.	Environmental Emiss	sions	
XVI.	Environmental Permi	its	
	Summary and Conclu References	isions	
	Appendices:	A.	Process Map
	••	B.	Comparison of Four Alternatives
		C.	Block Flow Diagram / Heat and Material Balance
		D.	Reasons for Anaerobic/Aerobic Process Selection
		E.	Design Sizing for Peak Loads
		F.	Cost Estimates
		G.	Waste Water Treatment Aspen Model
		H.	Evaporator Syrup Disposition
		I.	Process Flow Diagrams

I. Introduction

NREL (National Renewable Energy Laboratory) contracted with Merrick & Company (Merrick) to provide expertise in evaluating Waste Water Treatment Alternatives for various ethanol manufacturing processes. Three Lignocellulosic Biomass-to-Ethanol processes are currently under development by NREL. Each could require different treatment depending on various characteristics of the waste water stream volume and strength. To initiate the evaluation, Merrick met with NREL engineers and scientists in interactive meetings, where the appropriate designs were developed for each of the processes.

II. Waste Water Treatment Processes

Initial designs for the processes showed the potential for large waste water streams which could require extensive treatment systems. During discussions, Merrick showed the trend in the current, similar ethanol and pulp and paper industries to recycle various water streams internally in the process and to reclaim waste water with appropriate treatment to allow recycle. Especially over the past 20 years, once-through water systems have been replaced with minimum discharge systems. This is due not only to the cost of treatment for waste water, but also minimization of environmental impact, cost and availability of makeup water, etc.

In order to guide the selection of the best alternatives for waste water treatment, Merrick created a "map" of potential alternatives and potential internal process changes that would change the volume and strength of the system discharge. The map is shown in Appendix A. The map shows the effects of incorporating various subsystems into the process to minimize waste water generation. A few of the important aspects considered were:

- Elimination of combining all or most waste waster streams into one grand glop for simultaneous treatment. Previous flow schemes routed most waste water streams to a single Waste Water Tank. From this tank water was sent to treatment and then part of the treated water was recycled to the process. By selecting waste water streams which can be recycled individually upstream of treatment the treatment systems become much smaller and overall plant efficiency is greatly increased. Since some waste water streams are cleaner than others, it is better to do minor treatment of the relatively cleaner streams to allow reuse or recycle within the process. This both lowers the volumes of waste water and makeup water and also minimizes the treatment costs for the easily treatable streams.

Also, the objective of waste water treatment is to concentrate contaminants into a relatively small stream, leaving the major stream sufficiently clean for reuse or discharge. If a waste water stream is already somewhat concentrated, it will cost more to reconcentrate the contaminants if it becomes diluted due to mixing with less contaminated streams. Combining the centrifugation of the stillage with evaporation is advantageous in optimizing the recycle.

- Centrifugation of stillage, after the first stage of evaporation, removes the easily recoverable solids before they are combined with any other stream. Combining the streams would make the solids recovery more difficult and expensive. The recovered solids can be used as fuel or sold as byproducts rather than requiring treatment.
- Evaporation of stillage/centrate (the second and third evaporation stages are downstream of centrifugation) using heat integration with the distillation section of the process. The heat available in the required ethanol distillation section would otherwise require extra cooling (water).

Using these and other recycle options, two developments significantly minimized the size of the waste water treatment systems.

- 1. NREL developed with another contractor an integrated water recycle design intimately associated with the distillation system design. *Both centrifugation and evaporation were incorporated into the design.*
- 2. Merrick simultaneously evaluated the application of four alternatives to treatment with various degrees of recycle. Merrick specifically evaluated:
 - 1. Evaporation (and Incineration)
 - 2. Stream Discharge
 - 3. Land Application
 - 4, Discharge to a Publicly Owned Treatment Works (POTW).

The result is shown in Appendix B, which gives the costs to accomplish treatment of waste water without the improvements listed above (centrifugation and evaporation). As can be seen, the cost for treatment of the full volume of waste water is prohibitive.

Therefore, Merrick and NREL reduced the stream volume to that which could be expected from maximization of recycle, evaporation and centrifugation within the process. The flow scheme for water and reuse is shown in Appendix C. The waste water system now has significantly reduced flow, making onsite treatment easily achievable with conventional treatment systems.

Below is an explanation of the fully developed systems available for the past 10-20 years to treat these "high strength biologically treatable" streams. In actuality, the current sizing and strength of the waste water streams for the three NREL processes are all within the same typical treatment methodology: Anaerobic Treatment followed by Aerobic Treatment. Appendix D shows the reasons for application of these treatment steps as developed by industry.

III. Evaporator Syrup Disposition

The concentrate or syrup from the evaporator can be sent to the boiler directly or to the anaerobic digester. Merrick assumed that the syrup could be sprayed or mixed with the lignin cake and sent to the boiler as fuel in a first option. If the evaporators use all of the waste heat in the distillation section the syrup is predicted to contain 7.5 to 8% solids. Using a heat of combustion for the syrup solids of 8000 BTU/lbs. the syrup will have a negative heating value in the boiler. The syrup must be concentrated to about 12.5% solids for a break-even heating value.

The second option would be to send the syrup to the anaerobic digester. The digester and all downstream equipment becomes larger including the aerobic unit but this is somewhat offset by the production of more methane gas (boiler fuel) in the anaerobic digester.

Appendix G contains the comparison that was conducted. Various configurations of the anaerobic/aerobic units were considered and judged based on simplicity (ease of operation and maintenance) and cost. The decision was to burn the syrup at approximately 7.7% solids with the lignin in the boiler.

IV. Flows and Strength of the waste:

The stillage from the three processes qualifies as "high-strength" waste. At the beginning of the project, the CODs and BODs (Biological and Chemical Oxygen Demand) of each process were presented by NREL based on testing simulated stillage (Pinnacle 1998; Evergreen Analytical 1998) and an initial mass balance. These initial estimates are presented in Table 1.

Table 1

PROCESS	FLOW	COD	BOD	Ratio
	(Kg/hr)	(Mg/L)	(Mg/L)	BOD/COD
Enzymatic .	307,221	27,000	13,400	.496
Softwood	438,113	37,000	18,300	.495
Counter-current	668,314	54,000	29,400	.544

Upon evaluation of these initial estimates, a revised general waste treatment flow schematic was developed. This followed the typical evolution of ethanol plant designs over the past 15-20 years. To minimize costs of wastewater treatment and to minimize any makeup water requirements, the ethanol plant designs have incorporated various water recovery/cleanup/reuse schemes. Merrick developed with NREL, a typical scheme which used centrifugation and evaporation to concentrate waste into smaller stream flows.

The revised process(es) developed by others (Delta-T design for evaporation and dehydration, a separate project currently underway) similarly integrate the distillation step with waste treatment processes including evaporation and centrifugation for concentration of solids in the distillation column stillage.

The revised flow schematic includes various streams being recycled (or "backset" in the language of the ethanol industry). The new flow schematic also includes waste treatment streams from ion exchange (detoxification), pretreatment flash vents, syrup and condensate from the evaporator. The new schematic also includes waste waters from boiler and cooling tower blowdown to be included in the overall waste treatment process.

Following these revisions, a preliminary estimate of the strengths of the wastewater was performed. This estimate assumed that the removal of most of the soluble components from the stillage would reduce the COD of the wastewater to 3,000-7,000 mg/L. The assumed parameters for each case are shown below in Table 2.

Table 2

PROCESS	Projected Flow	Projected COD
	(Kg/Hr.) (MGD)	(Mg/L.)
Enzymatic	126,631	2,938 Mg/L to
	(0.8 MGD)	digester, 235 Mg/L to aerobic
Softwood	173,835	4,173 Mg/L to
	(1.1 MGD)	digester, 334 Mg/L to aerobic
Countercurrent	250,767	6,510 Mg/L to
	(1.6 MGD)	digester, 520 Mg/L to aerobic

As can be seen by the stream flows and strengths, the designs will now be suitable for typical industrial "high strength biologically treatable waste water." These waste water streams can be economically treated in either package plants of standard designs or in small custom plants with standard processes. Costs for each system were then projected by vendors and are contained in Appendix F. After the initial cost estimate was completed, the ASPEN model was completed. The ASPEN model used the soluble chemical constituents to project a COD loading into wastewater treatment. The estimate assumed that COD was a measure of the amount of oxygen required to convert all of the carbon in a specific compound to carbon dioxide. For example, the COD of glucose is 1.07 kg oxygen/kg compound and is calculated as follows:

C6H12O6 + 6 O2 = 6 CO2 + 6 H2O

COD of glucose = (6 kgmol O2*32 kg/kgmol)(1 kgmol glucose*180 kg/kgmol)

COD of glucose = 1.07 kg oxygen/kg glucose

The COD values calculated for the components in the NREL process using this methodology are summarized in Table 3.

Table 3 Component COD Factors

	COD Factor
Component	(kg COD/kg)
C-6 and C-5 Sugars and Oligomers	1.07
Cellobiose	1.07
Ethanol	2.09
Furfural	1.67
Lactic Acid, Acetic Acid	1.07
Glycerol	1.22
Succinic Acid	0.95
Xylitol	1.22
HMF	1.52
Soluble Solids	0.71
Soluble Unknown	1.07
Corn Oil	2.89
Acetate Oligomers	1.07
Acetate	1.07

As shown on the table, the COD for most components is slightly greater than unity. This approximation agrees well with practice; CODs of sugar-based streams generally range from 1 to 1.1 (kg COD/kg component) (Nagle 1998a). This method of approximation, however, did not agree well with the initial estimates of the strength of the wastewater; it resulted in COD loadings that were 5 to 10 times higher than the earlier projections. This discrepancy was due, in part, to the different methods used to determine COD. The initial, lower COD values, were based on a rule-of-thumb estimate where 1 pound of soluble solids was equivalent to 1 pound of COD (Ruocco 1998). This method did not take into account any soluble liquids (e.g., furfural) or the relative flowrates of the soluble solid components. In addition, initial stream flows on PFDs did not include all soluble solids (e.g., ammonium acetate) in its calculation of the soluble solid percentage.

In any case, a reliable method of projecting the COD of the wastewater needed to be developed. Thus, as noted earlier, NREL sent out samples of SSCF effluent from each of the 3 processes to determine the COD content and to test each samples digestibility (Pinnacle 1998; Evergreen Analytical 1998). In addition, a component analysis of the samples was conducted (McMillan 1998). To simulate distillation, all samples were stripped of ethanol using a constant volume technique so that concentration of the species would not occur. Copies of the test results are contained in Appendix G, Attachment 4.

Because these samples were not subjected to evaporation or ion exchange, they do not represent the composition of the streams to the wastewater treatment. However, they can be used to test the methods of COD projection. The predicted COD using the factors in Table 2 and the composition (without ethanol) for the enzyme process (McMillan 1998) is 28,398 mg/l. The average of 3 measured values for the enzyme process (Pinnacle 1998; Evergreen Analytical 1998) is 27,199 mg/l, an error of less than 5%. Thus, the method used in the ASPEN model appears reasonable.

A more detailed compositional analysis of the enzyme sample was also conducted. However, these values were not used due to possible contamination (McMillan 1998a). In addition to the reported values, Attachment 4 of Appendix G contains a spreadsheet that calculates the projected COD value.

Using the methodology outlined for the ASPEN model and using the W9809i model, the strength of the wastewater for the enzyme case is projected to be 32,093 mg/L with a total flowrate 188,129 kg/hr. Since the ASPEN models of the other 2 processes are not yet complete, no new estimate of the strengths and flows of these processes can be made. These parameters were then used to obtain an updated cost estimate for the wastewater treatment process. These costs are contained in Appendix J.

In the initial model, the BOD is calculated as 70% of the COD for all waste streams. This approximation agrees well with published ranges for COD and BOD for similar wastewater (Perry 1998). Although data on SSCF effluent predicts a lower BOD/COD ratio, with an average value of 52% for all technologies (Evergreen Analytical 1998), the wastewater in the model, will have a different composition than that analyzed due to detoxification and evaporation. It is also expected that this ratio will change through each treatment step.

Based on the projected wastewater compositions and the proposed treatment system, the estimated BOD/COD ratio is 0.50 for the influent to anaerobic digestion, 0.20 for the influent to aerobic treatment and 0.10 for the system effluent (Ruocco 1998). Since BOD is a laboratory test and cannot be specifically predicted, the ratios provided above are estimates based on experience with other wastewater systems. The FORTRAN blocks CODCALC1, CODCALC2 and CODEND in the ASPEN model should be updated with the new BOD/COD ratios.

The COD calculations outlined above correspond to the COD loadings for anaerobic digestion. In aerobic treatment, nitrogen-containing compounds such as ammonium acetate will have a significant oxygen demand (e.g., 4.43 kg O₂ required per kg of NH₃).

Since ammonia is not converted in anaerobic digestion, the contribution of the reduced nitrogen compounds is <u>not</u> included in the overall COD calculation. In aerobic treatment, however, these compounds cannot be ignored. This fact requires two significant changes to the model. The first is that reduced nitrogen compounds that are converted in anaerobic digestion (i.e., ammonium acetate and ammonium sulfate) must be treated differently in the ASPEN model. Currently, the carbon and sulfur portions of these compounds are converted to biogas and hydrogen sulfide, respectively, and the other portion is converted to water. This system incorrectly ignores the nitrogen in the effluent from anaerobic digestion. The second major change is in the FORTRAN block CODCALC2. The current COD values are the same as those listed above in Table 3. As discussed, these COD do not include the contribution of reduced nitrogen. This contribution must be accounted for in aerobic treatment.

To remedy this situation, the following specific changes should be made to the ASPEN model:

- 1. The reduced nitrogen compounds should be carried through the wastewater treatment system as their component ions. Thus, an RSTOIC block should be added prior to the anaerobic system. Here, ammonium acetate would be converted to ammonia and acetate and ammonium sulfate would be converted to ammonia and sulfuric acid.
- 2. The FORTRAN block CODCALC1 would then need to be modified such that the COD value for acetate was 1.07.
- 3. Within the anaerobic digestion subroutine, no significant changes would be required except that ammonium sulfate would no longer be converted to hydrogen sulfide and ammonium acetate would no longer be converted to methane, carbon dioxide and water. The new substances, acetate, sulfuric acid and ammonia are already correctly handled in the subroutine. That is, acetate is converted to biogas; sulfuric acid is converted to hydrogen sulfide and water; and ammonia is not changed.
- 4. As noted earlier, the FORTRAN block CODCALC2 must be modified so that all reduced nitrogen compounds are included in the COD calculation. Since most of these compounds are now noted as ammonia, a new COD factor of 4.43 should be added and applied to ammonia. Ammonium hydroxide should also be added and will have a COD demand of 2.15.
- 5. The FORTRAN block that calculates the air addition, AERAIR, should be modified so that there is no excess air.
- 6. The aerobic reactor should be modified so that the ammonia-containing compounds are converted to nitrates as follows:

$$NH_3 + 2.25 O_2 = NO_3 + 1.5 H_2O$$

A conversion efficiency of 98% should be used for this reaction.

7. Finally, the FORTRAN block POWER should be modified so that the work stream for the aerators is correct. Each kg of oxygen required uses 2 hp-hr of energy. This should be added to the FORTRAN block as well as an appropriate work stream. The current system comprised of a compressor with an associated work stream should be deleted and replaced as outlined above.

If these changes are made, it is expected that the ASPEN model will correctly simulate the wastewater treatment system. Other strategies would also likely work, but this appears to be the most straightforward method.

V. Waste Water/Sludge Processing

The process flow schematic in the revised recommended configuration retains a burner (sludge incinerator) to combust suspended solids produced by the centrifuge and to probably combust the syrup produced by the evaporator.

The inclusion of a waste burner system is to be compared with alternate sludge processing options in this report. These other options include land application of the sludge, with or without first composting the sludge. Also, this analysis includes the evaluation of the alternatives of evaporation and final treatment by a Publicly Owned Treatment Work (POTW). As can be seen in Appendix B, the relative costs of evaporation and POTW treatment appear to be typically more expensive than onsite treatment of the Ethanol Facility effluent.

VI. Evaporation

Combustion of Fuel for Evaporation or Incineration

The typical methods of evaporation of waste water effluent include energy sources of solar, fuel or waste heat. The alternative of incineration is similar to direct evaporation, especially with respect to the fuel requirements. For an average 1 MGD load of Waste Water (Option I for the Enzymatic Process; higher flows are expected for the other two processes), the energy requirement is about 1 x 8.33 pounds/gallon x 1,000,000 gallons x 1100 Btu per pound (to evaporate at low temperature only) per day. If the energy source is fuel at about \$2.20 per million Btu, the cost would be about \$20,000 per day or over \$7 million per year. Over a 20-30 year life of the project, the fuel cost alone could total over \$100 million, or more if fuel costs rise. The capital cost for the evaporation or incineration equipment and the operating and maintenance cost will be additional to this. Since the anticipated cost for other alternatives such as treatment by a POTW or onsite treatment is expected to be one-half this cost or less, we will not consider this alternative further.

Solar Evaporation

If the site has adequate space and adequate solar energy, the costs may be less. Typically solar evaporation is used where there is a net evaporation from a shallow pond after new rainfall adds to the evaporation load. The typical range of net evaporation is 1 to 10 inches of exposed surface per month (1 inch in winter, 10 inches in summer). This translates to 27,154 gallons per acre per month at the minimum. Actual land space required to pond the waste water safely will be about 120-130% of the evaporation surface to allow for dikes, access, etc. In addition, the design should include a holdup volume for storage of excess (peak) waste water and for extended winter evaporation rates.

With a typical net winter evaporation rate of 27,154 gallons per acre per month, even the well integrated Enzymatic Biomass-to-Ethanol facility (about 1 MGD waste water average; about 1.5 MGD design for peak flows) would require well over 1000 acres of land dedicated to solar evaporation. This would include a combination of peak storage for winter and adequate surface area for summer evaporation of average flow plus part of the stored volume. At a cost of about \$1200 per acre plus an additional \$800 per acre for diking, pumping and piping, etc., this would cost over \$2,000,000 for the land alone, if such a large area could be located near the facility. Operating and Maintenance costs, including removal of accumulated solids, would be additional to this. The other Biomass-to-Ethanol processes would require larger acreage and a resulting higher capital and operating cost. It is not expected that sufficient land space will typically be available due to the expectation that the location of a biomass facility will not be in an arid, hot, flat region. If a biomass facility is located in such a region, this alternative should be reevaluated using local design information.

Waste Heat Evaporation

If the Biomass-to-Ethanol facility has any waste heat available, it should already be recovered for other duties in the process if it is economical. This is evident by the sophisticated integration around the evaporator and distillation systems for the developed ethanol plant designs. If excess waste heat is available, it is expected to be at a low level, requiring a vacuum evaporation system with its associated capital and operating costs. The size/cost of this equipment is highly dependent on the available heat level. There may be some significant heat available in the boiler exhaust portion of the facility. However, this heat is most properly integrated into a lignin or other biomass fuel or product drying operation to minimize the fuel required to fire the boiler and to provide boiler feed water preheating.

VII. Irrigation

Another land application alternative is to apply a waste water stream directly to the land in an irrigation situation. This is different than solar evaporation and the application rate to the ground is typically higher since the water is used for a crop. Typical crops could eventually be part of the biomass feed stock for the ethanol facility. However, at present for an existing site, sufficient land and the associated growing season and crop farming operators may not exist.

<u>Handbook of Applied Hydrology</u> by Ven Te Chow, and <u>Wastewater Engineering Treatment, Disposal, and Reuse</u> by Metcalff and Eddy, (the McGraw Hill series in water resources and environmental engineering) were used to ascertain some data contained herein.

Some important aspects of land application for irrigation are:

- Large storage capacity is typically required to accommodate the times when application will not be allowed. This includes about 3-4 months of storage for the winter months, especially if the ground freezes. Land application is not allowed if the land surface is frozen. Also, there may be additional storage required, or additional land required, to accommodate the harvesting of the crop. Overall, full application rates to the soil may be limited to less than one-half the year.
- Concentrations of various contaminants may severely restrict the potential crop choices. Actual experience with a Front Range brewery waste water applied to alfalfa caused cattle feed problems. As a result, the waste water is now applied only to turf farms. This does not appear to be a reasonable design choice for continuous discharge of the waste water.
- Large land areas must be dedicated to the application of waste water. Certainly, in hot and arid regions, waste water is applied to golf courses or park land. However, these areas are typically not adjacent to forest products plants.

VIII. Other Wastewater and Sludge Treatment Alternatives

Another sludge disposal option could be the development of commercial markets for these materials. Such markets could be envisioned as a market for their chemical constituents, a market for these materials as animal feeds or as soil enhancement additives. This co-product development is beyond the scope of this report, however is highly recommended by the contractor for further development to enhance project economic viability.

IX. Suggested Treatment Options:

As can be seen from Table 2, the reduced flows from the three processes average between 1.0 and 2.2 MGD of total flow to the waste treatment block on the process flow schematic. Actual design flows will be higher than these daily averages to account for variations in operation and unexpected equipment unavailability. The attached Appendix E shows typical actual design sizing to accommodate peak daily, weekly, etc. flows.

The suggested treatment system should be a combination of anaerobic biological treatment followed by aerobic biological treatment. This recommendation is based on the calculated flow rates as well as the suggested waste strength.

Anaerobic and aerobic facilities in the 1 to 5 MGD range can be obtained in a variety of process and facility types ranging from custom engineered and constructed "municipal" facilities to vendor distributed and installed package type plants.

For the first draft of this report, contact was made with vendors of "off-the-shelf" package type anaerobic and aerobic plants.

Anaerobic units were selected by Phoenix Biosystems of Colwich, KS, and aerobic units of the sequential cell, aerated, fabric lined earthen pond type were provided by Globe Sampson Associates, Englewood, CO.

These two vendors each provided a table listing the basic equipment and installed cost for their respective units. The tables in Appendix F summarized the two vendor submittals for this draft report.

X. Discussion of Expected Effluent Quality

In general, with influents over 1000 Mg/L BOD, anaerobic digestion (treatment) is the preferred first treatment step. Anaerobic treatment of soluble organics will average over 90% reduction on a COD basis.

For effluents from the anaerobic treatment as influent to the aerobic treatment step of up to 400 Mg/L BOD, the effluent from the aerobic treatment system will average below 10 Mg/L BOD and TSS (Total Suspended Solids).

For effluents from the anaerobic treatment as influent to the aerobic treatment step of between 400 Mg/L to 800 Mg/L BOD, the effluent from the aerobic treatment system will average below 20 Mg/L BOD and TSS.

For effluents from the anaerobic treatment as influent to the aerobic treatment step of up to 1000 Mg/L BOD, the effluent from the aerobic treatment system will average below 30 Mg/L BOD and TSS.

As the site of the proposed facility and therefore the ultimate discharge of the effluents from the waste water treatment facility are unknown, 30 Mg/L BOD and TSS are suggested targets for maximum discharge parameters. 30 Mg/L BOD and TSS are usual stream discharge requirements for the average Western US stream. For the analysis in this report, the discharge standard of 30 Mg/L BOD and TSS are used as the required treatment standard for effluent from the Biomass-to-Ethanol facility. The fact that a particular project effluent could be higher quality than the regulation of 30 Mg/L BOD and TSS does not typically change the requirement for both an anaerobic and an aerobic treatment step. However, if the typical "treatment step" appears over-designed, the design should be evaluated for potential cost savings by reducing the size (residence time) of the equipment to match system performance to the effluent requirement.

Other parameters for waste water discharge requirements such as toxins, metals, nitrogen and phosphorous will have a bearing on treatment steps in the waste treatment scheme finally selected. *confirm that the list of contaminants does not contain high concentration constituents -- and note this here* The selected site specific discharge point will have a large effect on the difficulty of treatment and the discharge requirements for these parameters. Since the expected effluent from an unspecified location with a Biomass-to-Ethanol facility does not contain unusually high levels of normally suspect contaminants, this analysis will not have any adjustments for isolated contaminants. However, if a project has a new feed stock with significant levels of regulated contaminants, the project economics should include additional capital and operating costs to properly treat these contaminants.

XI. ASPEN Model

A waste water treatment model was developed and incorporated into an NREL base model (W9806F). The resulting model, P9808B, has been checked into the Basis database. Appendix G gives a detailed description of the model development plus a listing of changes and subroutines.

XII. Treatment of Anaerobic Digester Off Gas

Anaerobic digester off gas is primarily a mixture of methane and carbon dioxide. It is burned in the boiler to recover the heat of combustion of the methane. Late in Task 3 it was noticed that the waste water contains sulfates which will convert to hydrogen sulfide in the digester. The resultant hydrogen sulfide concentration in the off gas is approximately 1800 ppm (wt.). At this concentration the gas must be considered toxic. Further the boiler stack will emit approximately 1.14 tons/day of sulfur to the atmosphere (tons/day of SO2). It is believed that this emission rate would not be permitted in the U.S. EPA regulations are site specific but a useable rule of thumb is less than 100 tpy of SO2 emissions is allowable. Also the anaerobic off-gas will meet toxicity definitions in OSHA 29 CFR 1910.119 and EPA 40 CFR.

It should be noted that the fluidized boiler which burns the anaerobic off-gas may include limestone addition for other sulfurous components in the lignin fuel. If this is the case treatment in the combustion chamber may be more economical than the options described below. The boiler is not in Merrick's work scope.

Two potential treating options were briefly considered to remove hydrogen sulfide from the off gas:

1. Iron Sponge Process and SulfaTreat Process

SulfaTreat is a proprietary process licensed by the SulfaTreat Company, Chesterfield, MO. The process is a vast improvement over the generic iron sponge process. However, because of the large flow rate and daily sulfur tonnage, the SulfaTreat Company found that their process is not practical for the 2000 bone dry tons per day plant size. This is because the process reacts hydrogen sulfide with beads impregnated with ferric oxide. As the ferric oxide is consumed the beads must be changed out. The beads cannot be regenerated but are suitable for landfill. At the large plant size 6500 cubic feet per month of beads are consumed which is impractical. Plant sizes under 1000 bdt/d should consider the SulfaTreat process.

2. Direct Oxidation Processes

U.S. Filter was contacted concerning their Lo-Cat process for the direct oxidation of hydrogen sulfide to elemental sulfur. Lo-Cat is a well known process in the natural gas processing industry and also has extensive application to anaerobic off gas. Several companies offer similar direct oxidation processes.

Lo-Cat can produce the elemental sulfur in several physical forms depending on the market for this material. Most elemental sulfur produced in the U.S. is consumed by the fertilizer industry. The price obtainable for this byproduct is highly site specific and has not, as yet, been included in the plant economics.

U.S. filter estimates the bare equipment cost the Lo-Cat equipment will be \$1,500,000 which is a considerable increase over the previous allocation of approximately \$56,000 for off gas handling (M-606).

XIII. Plant On-stream Factor

The capital to be invested in equipment sparing must be carefully evaluated against the predicted increase in on-stream factor for the entire plant including the waste treatment sections. The flowsheets and model currently indicate a number of the pumps to be spared yet certain services such as P-611, Clarifier Feed Pump, do not have a spare. Merrick feels it may be possible to delete all installed spares downstream of the aerobic lagoon as the lagoon can be made marginally larger and provide the necessary surge time for equipment repairs. In each case the investment in warehouse spares must be considered based on availability and delivery time for parts. This must be evaluated against the potential for boiler upset due to sudden load variations and against the cost of the larger lagoon. The filter press is in this part of the process and is considered a high maintenance service.

The large decanting centrifuges, S-601 A/D, are key equipment items and each machine is very expensive (\$750,000 each, not installed). However this is a difficult service and will have significant individual machine off-stream maintenance. High Plains Corp. at York, NE (corn to ethanol) has multiple spares in a very similar service and list these decanters as one of the three highest maintenance services in the plant.

Rotating machinery of nearly all types tends to have relatively high maintenance. The York plant also listed long-shaft tank agitators in their fermentors and all of the solids/cake conveyors.

Many of the pumps in the plant are moving slurries and these pumps have a much higher maintenance history than pumps moving only liquids provided that the temperatures and pressures are in a normally encountered operating range.

An evaluation of predicted failure frequency, duration of repairs and cost of lost production versus the cost of installed or warehouse spares is the classic method of determining if a spare equipment should be purchased, provided the necessary performance data is available. This evaluation is beyond the scope of the current work.

XIV. General Plant Considerations

The High Plains Corp. of York, NE uses variable speed electric drives in many of their rotating equipment services. They have found this a superior method of process control. Alternatives have maintenance and efficiency drawbacks:

- 1. Throttling control valves in mixed phase (solid/liquid) service are subject to erosion and plugging. They are considered high maintenance items.
- 2. Pump arounds can be made practical when properly sized but waste energy in the discharge to suction loop.

3. Belt and screw conveyors can also use recycle (spill-over) control methods but suffer from the same inefficiencies.

It is advisable to consider variable speed drivers for NREL designs. The cost of variable speed electric drives is higher than fixed speed but this may be justified by avoiding expensive specialty control valves, avoiding recycle loops, increasing operating ease, enhancing start-up reliability etc. In this regard, depiction of control methods would enhance the flow sheets and allow more meaningful pressure profiles, hydraulics and pump sizing.

XV. Environmental Emissions

The biomass to ethanol facility is a specific group of chemical processes which in general, break down cellulose and lignin complexes in to sugars. The sugars are subsequently fermented by yeast or bacterial action into ethanol and other left over compounds and biomass.

The basic steps include pretreatment processes which break down the cellulose and lignin complex to simpler compounds and finally with suitable chemicals or enzymes into sugars. These sugars are fermented by either yeast or bacteria yielding ethanol, biomass and left over molecules. The weak beer is consequently distilled and otherwise treated to yield high proof ethanol which is the main product of this process and leftover compounds in the form of suspended and dissolved solids in liquid streams. The leftover compounds become either byproducts worth money, or must be treated as liquid or solid wastes. The biological based feedstocks make the production of most hazardous compounds not an issue. However, some compounds classified as toxic will have to be treated in the waste treatment processes associated with the biomass to ethanol facility.

The biomass compounds which make up the feedstocks for these facilities may be as simple as sugar or ethanol solutions, or as complex as hardwoods, and the leftover molecules from the processing steps will be varied as well.

The fate of left over molecules:

Emissions from sewage treatment plants are in the form of odors and VOC's emitted from the various treatment processes. Molecules not emitted can be "bioconverted" into other molecules and compounds which may be emitted or form part of the biomass or sludge left over from the treatment process. Finally molecules not emitted or bioconverted can be reported as liquid borne emission in the effluent liquids or as semi solid sludge from the waste treatment process. The **FATE** of the produced molecules and compounds in the waste treatment process is the subject of this section of the report.

To discover the FATE of the many potential compounds and molecules that a biomass to ethanol facility can generically produce is beyond the scope of this general section. The authors of this report have had success using one of the many computer models which can trace the fates of molecules in a sewage treatment facility.

Computer models such as "BASTE" (Bay Area Sewage Toxic Emissions), "CHEMDAT 7", and "SIMS" are examples of commercially available computer models which can be tailored to the exact series of processes that comprise the sewage treatment plant in question. The models each contain embedded data bases containing many chemical compounds which have been found in sewage influents at actual sewage systems. The data bases have bioconversion constants for the biotreatability and Henry's Constants for the emission and or solubility or each compound.

The model consists of a series of mass transfer algorithms coupled with bioconversion formula which taken in a series consistent with the sewage treatment plant being modeled, allow the concentration of the sewage stream to be calculated for each process in the sewage treatment train. Thus the environmental emissions of any sewage treatment process can be approximated.

Releases to the air, land, water and other:

Project designers typically use check lists specifically tailored for the biomass to ethanol plant designer. The check lists for air, land, water, and other emissions, will allow the designer to be aware of specific emissions from the plant in each release category. This will allow the designer to begin a permitting process in an early stage in the plant design. Construction permits from Environmental agencies typically require as much as a year of effort to obtain, depending on the specific site of the proposed facility.

Air releases:

An example of such a check list is as follows:

Release	Relevant to the Site	Relevant to the facility	Permitted amount.
Sulfur dioxide	X	X	100 TPY
NOX	X	X	
CO	X	X	
PM10	X	X	25 TPY
Lead			
VOC	X	X	
CO2			
CH4			
Acetaldehyde			
Formaldehyde			
Other toxics			
Radionuclides			
Thermal emissions			

The expected concentration of each compound identified in the waste stream would be entered into the properly configured BASTE or SIMS model of the sewage system for the ethanol facility. The actual calculation of emissions for that compound both in the air and in the effluent would be the output of the model. In this way, the checklist can be filled and the permit process initiated.

Water releases (releases with effluent):

Release	Relevant to the Site	Relevant to the facility	Permitted amount
BOD			
TSS			
NH4			
NO3			
Oil and grease			
Priority pollutants			
Thermal emissions			

As with air, the amounts of compounds can be entered into the table and the calculated resultant emissions can be included as part of the permit process and the eventual permit for the ethanol facility.

Land concerns:

Land area to dispose of the solid and semisolid residue of the plant will be a concern to the plant designer. Typically, nutrients contained in the sludges will determine how many pounds of the material can be applied to an acre of land during a crop season. In colder climates, sludges cannot be applied to frozen ground and require storage for 180 days, provision for such storage will have to be part of the initial plant design.

Other concerns:

Other concerns of the plant designer will be Health and Safety, Noise, Odors, Catastrophic Events and Aesthetics. Each item should be addressed by the facility designers to match the local requirements.

Emission measurements at operational ethanol facilities:

Emission measurements may be required by the regulatory authorities. Such measurements may be in the form of "stack tests" at the boiler and other vent stacks. Such tests usually monitor for PM10, VOC's and toxics. Measurement of the emissions from the waste treatment facility can be avoided by careful configuration and operation of the BASTE or SIMS models which provide an answer for the regulatory agencies which has been accepted by the agencies when applied. Typically operation of the computer model is much less expensive than is the field testing required to actually measure actual emissions. The result of the model is frequently a better look at actual emissions than is the "snap-shot" look that results from field testing.

Emission treatment at operational ethanol facilities:

Sewage plant VOC emissions can be easily controlled by covers over the emitting unit operations. Weir covers and covers over manholes and other sewage structures where waste streams come in contact with the air are the treatment choices due to the low cost of such control measures. Typically unit operations where odors are emitted in sewage plants are also the areas where VOC's are emitted. Odor control usually provides some measure of VOC control.

The sludge incinerators, spent grain driers, and/or the steam boilers employed at ethanol facility, are all subject to PM10 and VOC emission controls. Waste gas flares for biogas from anaerobic processes must also be designed for low emissions. For very large power plant boilers, NOX control such as low NOX burners must be employed.

XVI. Environmental Regulations and Permits

Similar to the Report Section XV on Emissions from Ethanol Plants, this report Section will address the Regulations and Permits required to construct and operate a typical facility in the USA.

This section addresses the regulations and permits required to release discharges into the air, into a water body/stream, and onto land. Each of these areas has had regulations issued at the Federal, State and Local levels. Permits associated with these regulations are often managed at the State or a Local level as directed by the Federal and State Statutes. Sometimes the authorizing agency may be the State itself, a Regional District or Agency, a County, and/or a City or other smaller entity. Whichever discharges are contemplated, the first step is to determine the agency(ies) having jurisdiction for the actual plant location and for each discharge contemplated.

Most local or state governments maintain an "Assistance Center" to guide the new Facility Owner through the applicable regulations and how to obtain the required permits for construction and operation. The particular "center" may be called a "Permit Assistance Center" or "Technical Assistance Center" or a similar title. Local county agencies will be able to determine the best method of establishing the jurisdictional agencies for the emissions from the new Ethanol Facility.

For construction and operation of a new Ethanol Facility that will be co-located at an existing host site, the discharges may become part of the existing host discharges with modifications to existing permits. Therefore, in addition to determining the agencies having jurisdiction, the new Ethanol Facility Project Owners must also determine if the Facility will be operated as a separate entity or as an addition (modification) to an existing facility. This report will not address specifically the permit requirements of a co-located, co-owned Facility, since the permit requirements will be determined by the (modification of the) existing permits for the host site. However, the comments about the emissions (previous Section XV - Environmental Emissions and Effects) and the related permits for an Ethanol Facility (below) will be applicable to the modifications of the existing permits.

Other Regulations

The Wastewater Treatment Systems at a new Ethanol Facility will be subject to many regulations other than the air, water and solid waste regulations. Typical of these will be the Occupational Health and Safety Act (OSHA) regulations about personnel safety. These regulations will address standard safety aspects of such things as ladders, personnel access, confined spaces, etc. Another series of regulations will be the National Fire Protection Association and the American Petroleum Institute standards regarding the methane and hydrogen sulfide gases evolving from the anaerobic treatment of wastewater. Also, the electrical devices used in the wastewater treatment systems may require Underwriters Laboratories (UL) certification for certain components. This report

will not address these specifically since these regulations and standards will apply to the whole Ethanol Facility.

Air, Water and Solid Waste Regulations and Permitted Quantities of Emissions

For each type of environmental emission, the Owner must <u>determine the type and quantity of each specific regulated constituent</u> that may be contained in the intended discharge. For example, the air emissions may contain particulates (PM10), Volatile Organic Compounds (VOC's), and other similarly regulated constituents.

The Owner must estimate to a sufficient degree the maximum, the average, and/or the total expected emission of each category of release to the atmosphere, the water, and the land. Sufficient controls (engineered equipment and operating procedures) and monitoring/reporting must be put into place at the Facility to ensure that the Owner will be able to comply with the limits of his proposed emission types and quantities.

Location of Ethanol Facility

The regulations require permits for construction and operation of an Ethanol Facility that depend on the facility location. Basically, this may range from an undisturbed "greenfield" site to a previously occupied or existing industrial site. Also, and this may be equally important, the facility site may have no nearby neighbors or may be surrounded with residential or other neighbors. The presence of a local population may impact allowable limits for such emissions as odors (even during emergency situations), visual aesthetics, etc. Thus, even though odor is not currently regulated under any federal program, state and local regulations may require that odor control be specifically addressed (to the satisfaction of the local populace).

As a location for the Ethanol Facility is determined, the local authorities should be contacted to establish the various requirements for the Permitting of the Facility. Planning Departments of the City/County or similar entity sometimes offer an organized approach to permitting with a "Permit Assistance Center" or similar organization. These organizations should be contacted to determine which agencies participate at that one location. These organizations also provide checklists of required permits and compliance information, including ongoing operational monitoring and reporting requirements. These checklists should be utilized to set up the Operation and Maintenance procedures for the Ethanol Facility. An example is available on the Internet at http://smallbiz-enviroweb.org/htm/regchecklist.asp.

Air Emission Regulations and Permits

Federal Clean Air Act and Amendments

The Federal Clear Air Act, originally promulgated in 1963, has been modified and upgraded in content and requirements by various Amendments in 1967, 1970, 1977 and 1990. The Act and its Amendments require State Implementation Plans or the Federal Environmental Protection Agency (EPA) will provide the implementation. States that have implemented the requirements of the Clean Air Act may also allow the participation of local governments in controlling air pollution within their territorial jurisdictions.

While the wastewater treatment section of the Ethanol Facility typically controls the wastewater in piping and tanks, etc., any storm water that is received by the Facility must also be contained and addressed as required. Storm water on the Facility site may fall into various categories requiring different treatments. For example, storm water on roads and parking lots may only require a surge volume control before slow, controlled release to the natural receiving water. However, storm water in the main process units may require hydrocarbon separation treatment steps to remove any spillage existing on the contained process area. Also, storm water on an uncovered wood chip storage pile will produce a leachate that contains material which will settle and that must be removed before discharge of the storm water. The design of the Facility should incorporate a coordinated approach of equipment and procedures for containment and treatment of all storm water received by the Facility.

Water Emission Regulations and Permits

The information below has been adapted from the reference item "Wastewater Engineering Treatment, Disposal and Reuse" and gives typical guidelines for the discharge of wastewater to a receiving body.

A National Discharge Elimination System (NPDES) program was established based on uniform technological minimums with which each point source discharger had to comply.

Pursuant to Section 304(d) of Public Law 92-500, the U.S. Environmental Protection Agency published its definition of secondary treatment. This definition, originally issued in 1973, was amended in 1985 to allow for additional flexibility in applying the percent removal requirements of pollutants to treatment facilities serving separate systems. The current definition of secondary treatment is reported in the table below. The definition of secondary treatment includes three major effluent parameters: 5-day BOD, suspended solids, and pH. The substitution of 5-day carbonaceous BOD (CBOD₅) for BOD₅ may be made at the option of the NPDES permitting authority. Special interpretations of the definition of secondary treatment are permitted for publicly owned treatment works (1) served by combined sewer systems, (2) using waste stabilization ponds and trickling filters, (3) receiving industrial flows, or (4) receiving less concentrated influent wastewater from separate sewers.

Minimum national star	ndards for second	ary treatment ^b	
Characteristics of	Unit of	Average 30-day	Average 7-day

discharge	measurement	concentration	concentration
BOD ₅	mg/L	$30^{c,d}$	45°
Suspended solids	mg/L	$30^{c,d}$	45 ^c
Hydrogen-ion	pH units	Within the range of	9.0 at all
concentration	_	6.0 to	times ^e
CBOD ₅ ^f	mg/L	25 ^{c,d}	40 ^c

b Present standards allow stabilization ponds and trickling filters to have higher 30-day average concentrations (45 mg/L) and 7-day average concentrations (65 mg/L) BOD/suspended solids performance levels as long as the water quality is not adversely affected. Exceptions are also permitted for combined sewers, certain industrial categories, and less-concentrated waste water's from separate sewers.

In 1987, Congress completed a major revision of the Clean Water Act. Important provisions of the WQA are (1) the strengthening of federal water quality regulations by providing changes in permitting and adding substantial penalties for permit violations, (2) significantly amending the CWA's formal sludge control program by emphasizing the identification and regulation of toxic pollutants in sludge,

In response to the provisions of the Water Quality Act, new regulations have been promulgated or proposed for controlling the disposal of sludge from wastewater treatment plants.

In 1989, the EPA proposed new standards for the disposal of sludge from wastewater treatment plants. The proposed regulations established pollutant numerical limits and management practices for (1) application of sludge to agricultural and non-agricultural land, (2) distribution and marketing, (3) monofilling or surface disposal, and (4) incineration.

Trends in Regulations

Regulations are always subject to change as more information becomes available regarding the characteristics of wastewater, effectiveness of treatment processes, and environmental effects. It is anticipated that the focus of future regulations will be on the implementation of the Water Quality Act of 1987. Receiving the most attention will be the pollutional effects of storm water and nonpoint sources, toxics in wastewater (priority pollutants), and as noted above the overall management of sludge, including the control of toxic substances. Nutrient removal, the control of pathogenic organisims, and the

^c Not to be exceeded.

^d Average removal shall not be less than 85 percent.

^e Only enforced if caused by industrial wastewater or by in-plant inorganic chemical addition.

^f May be substituted for BOD₅ at the option of the NPDES permitting authority.

removal of organic and inorganic substances such as VOCs and total dissolved solids will also continue to receive attention in specific applications.

Other Regulatory Considerations

In addition to the requirements established under the 1987 Water Quality Act and enforced by the U.S. Environmental Protection Agency, other federal, state, and local agencies prescribed by the Occupational Safety and Health Act (OSHA) which deals with safety provisions to be included in the facilities' design. State, regional, and local regulations may include water quality standards for the protection of the public healthy and the beneficial uses of the receiving waters, air quality standards for the regulation of air emissions (including odor) from treatment facilities, and regulations for the disposal and reuse of sludge. Because all of these guidelines and regulations affect the design of wastewater treatment and disposal facilities, the practicing engineer must be thoroughly familiar with them and their interpretation and be aware of contemplated changes. Contemplated changes and current interpretations of the regulatory aspects of water pollution control are summarized in various weekly publications.

XVII. Summary and Conclusions

Several important results were disclosed during this work, among those were:

- 1. The waste water streams for the three NREL processes (co-current enzyme, softwood, hardwood) are all within the same typical treatment methodology: Anaerobic Treatment followed by Aerobic Treatment.
- 2. Waste water minimization through judicious water recycling is economically advantageous compared to once-through water use.
- 3. Although treatment must be judged anew for each specific plant site, the anaerobic followed by aerobic treating processes appear to be, most often, advantageous.
- 4. The anaerobic digester off gas is potentially laden with hydrogen sulfide in sufficient quantities to require sulfur removal processing.
- 5. The capital cost estimate resulted in a total installed cost for the 2000 bdt/y feed rate case of \$11,362,700. Please refer to Appendix F for the structure and backup of this estimate.

Further Work

Several areas indicate the need for more development:

- 1. Treatment of the anaerobic off gas stream for the enzymatic process. This stream may contain sulfur (as hydrogen sulfide) in concentration to be toxic and to require clean-up prior to combustion.
- 2. The methane to carbon dioxide ratio in the anaerobic digester off gas is variable with the operation and the proprietary license. This ratio needs to be established for the plant economic assessment.
- 3. A 1986 EPA regulation includes a classification of "ethanol for fuel". This regulation needs to be analyzed for potential benefits.
- 4. The waste water section should be considered for a environmental model to assist in design and to replace on-site sampling when plants are built.
- 5. Some waste streams were not considered which may have significant impact. Namely : periodic vessel drains for maintenance, storm water falling within curbed areas, chip stock pile leachate, etc. Additionally the effects of listed chemical inventories are not fully developed. These chemicals include natural gasoline denaturant, BFW chemicals, WWT chemicals, lube oils, various acids and bases.
- 6. VOC emissions for the above chemicals should be evaluated.

XVIII. References

Evergreen Analytical. 1998. Analysis Report, Lab Sample Numbers: 98-1697-01, 98-1593-01, 98-1609, April 22, 23, 30.

McMillan, J. 1998. Composition of post SSCF liquors, Memorandum to R. Wooley, June 10.

McMillan, J. 1998a. Personal communication, August 28.

Nagle, N. 1998. Personal communication, August 31.

Nagle, N. 1998a. Personal communication, August 27.

Perry, R.H. and Green, D.W. 1998. Perry's Chemical Engineers' Handbook, 7th edition, McGraw-Hill, New York, pg. 25-62.

Pinnacle Biotechnologies International, Inc. 1998. "Characterization and Anaerobic Digestion Analysis of Ethanol Process Samples", July.

Ruocco, J. 1998. Personal communication and cost estimates.

Ven Te Chow, 1964, "Handbook of Applied Hydrology", McGraw Hill, New York, NY

Metcalf and Eddy, 2nd Edition, 1979, "Wastewater Engineering Treatment, Disposal, and Reuse," McGraw Hill, (water resources and environment series), New York, NY

Appendix A

Process Map

 $\frac{\text{MAP}}{\text{DISCUSSION OF POSSIBLE OUTCOMES OF TREATMENT AND DISPOSAL}}$ $\frac{\text{OPTIONS:}}{}$

OUTCOME	<u>DISCUSSION</u>
A. (Stream 5 from Centrifuge) <u>Direct Evaporation</u>	Extremely energy intensive, not recommended.
B. (Stream 5 from Centrifuge) Direct Stream Discharge	Not permissible in the USA without extensive treatment.
C. (Stream 5 from Centrifuge) Direct Land Application	Very large land acreage required.
D. (Stream 5 from Centrifuge) Direct Discharge to PWTP	Extremely expensive as flow and load are each very high.
E. (Stream 9 from Evaporator) <u>Direct Evaporation</u>	45% of A. with the same result.
F. (Stream 9 from Evaporator) <u>Direct Stream Discharge</u>	Not permissible in the USA without further treatment.
G. (Stream 9 from Evaporator) <u>Direct Land Application</u>	45% of E with the same result.
H. (Stream 9 from Evaporator) Direct Discharge to PWTP	Still very expensive.
I. (Stream 13 from Anaerobic System) <u>Direct Evaporation</u>	A possible outcome.
J. (Stream 13 from Anaerobic System) Direct Stream Discharge 30/30 mg/L	A possible outcome, but not permissible without some further treatment.
K. (Stream 13 from Anaerobic System) <u>Direct Land Application</u>	A possible outcome, but very site specific.
L. (Stream 13 from Anaerobic System) Direct Discharge to PWTP 300 mg/L	This is a possible outcome.

Add expected costs for each at 1 MGD or other flow to show that the expected typical case will be onsite treatment.

version 3-30-98	Мар	mass ba	lance					Ī					
flow no.	1	2	3	4	5 feed	6	7	8	9 fe e d	10 methanator	11 Methanator	12 feed to	13 aerobic
flow name	stillage	centrifuge solids	centrifuge liquids	backset	to next	evaporator syrup	evaporator condensate	evaporator backset	to methanator	effluent	backset	aerobic treatment	effluent
flow rate kg/h	438,183.0	2,081.4	436,101.63	43,610 16	392,491.47	43,724.87	348,766.60	174,383.30	174,383.30	174,383 30	87,191 65	87,191.65	87,191 65
backset (%)	0.0	0.0	0.00	10.00	0.00	0.00	0 00	50 00	0.00	0.00	50 00	0 00	0 00
% TS	3.8	21.0	3.71	3.71	3.71	30.00	0.42	0.42	0 42	0 0363	0.04	0 04	0 002
% Suspended Solids	0.1	18.0	0.00	0.00	0.00	0.04	0.00	0.00	ö öö	0.0029	0 0029	0 0029	0 0002
%dissolved solids	3.7	63.1	3.71	3.71	3.71	29.96	0 42	0 42	0 42	<u> 0</u> 03	0 033	0 033	0.00
% moisture	96.2	79.0	96.29	96.29	96.29	70.00	99.58	99 58	99.58	99.96	99 96	99 96	99 99
kg/h of moisture	421,553.0	1,643.6	419,929.14	41,992.91	377,936.23	30,607.41	347,311.08	173,655 54	173,655.54	174,320.06	87 160 03	87 160 03	87,182 93
kg/h suspended solids	394.4	374.6	19.72	1.97	17.75	17.75	0.00	0.00	0 00	5 02	2 51	2 51	0 15
kg/h of total solids	16,630 0	437.8	16,192.20	1,619.22	14,572.98	13,117.46	1,455.52	727.76	727.76	63.24	31 62	31 62	1.46
kg/h of dissolved solids	16,235.6	63.1	16,172.49	1,617.25	14,555.24	13,099.71	1,455.52	727.76	727.76	58.22	29 11	29 11	1.31
kg/h COD	16,630.0	437.8	16,192.2	1,619.2	14,573.0	32,793.7	1,455.5	727.8	727.8	58 22	29.11	29 11	1 46
mg/I COD	37,952.2	210,340.0	37,129.4	37,129.4	37,129.4	750,000.0	4,173.3	4,173.3	4,173.3	333.9	333.9	333 9	16 7
Bioreactor Loading (kg/m3/d)									12.00			1 00	
Bioreactor Volume									1,455.52			698 65	
(m3)													• •
COD Reduction									0 92			0 95	
Biogas Production rn3/d)									3,936 90			o ōo	

version 3-30-98	Мар	mass ba	lance										
flow no.	1 stillage	2 centrifuge	3 centrifuge		5 feed to next	6 evaporator	7 evaporator	8 evaporator	9 feed to	10 methanator effluent	11 Methanator backset	12 feed to aeroluc	13 aerobic effluent
flow rate kg/h	668,314.0	solids 38.8	Ilquids 668,275.20	backset 66,827.52	process 601,447.68	syrup 98,264.72	condensate 503,182 97	backset 251,591.48	methanator 251,591.48	251,591 48	125,795,74	treatment 125,795 74	12 5,795.74
backset (%)	0.0	0.0	0.00	10 00	0.00	0.00	0 00	50.00	0 00	0.00	50 00	0 00	0 00
% TS	5.4	22.4	5.45	5.45	5.45	30.00	0.65	0.65	0 65	0.0566	0.06	0 06	0 003
% Suspended Solids		18.0	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0 0045	0.0045	0 0045	0 0003
%dissolved solids	5.4	1.7	5.45	5.45	5 45	30.00	0.65	Õ 65	0 65	0 05	0 052	0 052	0 00
% moisture	94.6	77.6	94.55	94.55	94.55	70.00	99.35	99.35	99.35	99 94	99 94	99 94	99 99
kg/h of moisture	631,911.0	30.1	631,881.27	63,188.13	568,693.14	68,785.30	499,907.51	249,953 76	249,953.76	251,449.16	125,724 58	125 724 58	125,783 16
kg/h suspended solids	7.4	7.0	0.37	0.04	0.33	0.33	0.00	0.00	0 00	11.30	5 65	5 65	0 3 <u>3</u>
kg/h of total solids	36,403.0	8.7	36,394.30	3,639.43	32,754.87	29,479.41	3,275.45	1,637.73	1,637.73	142.32	71.16	71.16	3 28
kg/h of dissolved solids	36,395.6	1.7	36,393.93	3,639.39	32,754.54	29,479.08	3,275.45	1,637.73	1,637.73	131.02	65.51	65 51	2 95
kg/h COD	36,403.0	8.7	36,394.3	3,639.4	32,754.9	73,698.5	3,275.5	1,637.7	1,637.7	131.02	65.51	65.51	
mg/l COD	54,469 9	224,280.0	54,460.0	54,460.0	54,460.0	750,000.0	6,509.5	6,509.5	6,509.5	520.8	520.8	520 8	26 0
Bioreactor Loading (kg/m3/d)									12 00			1 00	
Bioreactor Volume (m3)									3,275.45			1,572 22	
COD Reduction									0.92			0 95	
Biogas Production (m3/d)									8.859.45			ō ōō	

version 3-30-98	Мар	mass ba	lance										
flow no.		2	3	4	5 feed	6	7	<u>8</u>	9 feed	10 methanator	11 Methanator	12 feed to	13 aerobic
flow name	stillage	centrifuge solids	centrifuge liquids	centrifuge backset	to next	evaporator syrup	evaporator condensate	evaporator backset	to methanator	effluent	backset	aerobic treatment	effluent
flow rate kg/h	307,221.0	17.8	307,203.16	30,720 32	276,482. 8 5	22,394.92	254,087.93	127,043.96	127,043.96	127,043 96	63,521 98	63,521.98	63,521,98
backset (%)	0.0	0.0	0.00	10.00	0 00	0.00	0.00	50 00	0.00	0.00	50.00	0 00	0 00
% TS	2.7	20.2	2.70	2.70	2.70	30.00	0.29	0.29	0 29	0.0255	0 03	0 03	0 001
% Suspended Solids	0.0	18.0	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0 0020	0 0020	0 0020	0 0001
%dissolved solids	2.7	0.4	2.70	2.70	2.70	30.00	0 29	0.29	0 29	0 02	0 024	0 024	0 00
% moisture	97.3	79.8	97.30	97.30	97.30	70.00	99.71	99.71	99.71	99.97	99.97	99 97	99 99
kg/h of moisture	298,923.0	14.2	298,908.94	29,890.89	269,018.04	15,676.44	253,341.45	126,670 72	126,670.72	127,011.53	63,505 76	63,505,76	63 ,515 63
kg/h suspended solids	3.4	3.2	0.17	0.02	0.15	0.15	0.00	0.00	0.00	2.58	1 29	1.29	<u>0</u> 07
kg/h of total solids	8,298.0	3.6	8,294.40	829.44	7,464.96	6,718.48	746.48	373.24	373 24	32.43	16 22	16 22	0.75
kg/h of dissolved solids	8,294.6	0.4	8,294.23	829.42	7,464.80	6,718.32	746.48	373 24	373 24	29.86	14.93	14 93	0.67
rg/h COD	8,298.0	3.6	8,294.4	829.4	7,465.0	16,796.2	746.5	373.2	373.2	29.86	14 93	14.93	0.75
ng/I COD	27,009.9	202,058.0	26,999.7	26,999.7	26,999.7	750,000.0	2,937.9	2,937.9	2,937.9	235.0	235 0	235 0	118
Bioreactor Loading kg/m3/d)									12 00			1 00	
Bioreactor Volume									746.48			358 31	
m3)													
OD Reduction									0.92			0 95	
iogas Production n3/d)									2.019.08			0 00	

Appendix B

Comparison of Four Alternatives

NREL - Etl	hanoi WWT	Options							
		St	ream #	Flow, MG	D MGY	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/I#/Year	MM\$	/Year
A	Direct Eva	poration	5		T 1. T	98710	822254		.990
В		am Discharge		270	require	es Denver		-	
C	Direct Lan	d Application		270				9120 1	30
D	Discharge		** ** ***	270				\$	368
E	Direct Eva	poration	9			44419	370014		895
F	Direct Stre	am Discharge		122	require	es Denver			
G	Direct Lan	d Application		122				S	13
H	Discharge	to POTW		122				<u> </u>	166
I	Direct Eva	poration	13	61		22210	185007	- -	448
J	Direct Stre	am Discharge		61	require	es			170
K	Direct Lan	d Application	· -	61	2		·· ·	\$	7
L _,	Discharge	to POTW		61			_	\$	83
A. E. & I	\$ 2.20	poration Description Descript	el cost or	nly					
B, F. & J	requires me	eam Discharge eeting spec of eatment equiva	30 mg/L lent to a	regional or	large city to	reatment p	olant		
C. G. & K	Direct Lan	d Application acres require	d for 1 N	MGD Evap	orati Capita	l @	8.00%		
$\frac{\text{input}}{\text{input}} = >$	\$ 200	per acre puro	nase and	improvem	ent c \$ 1,1				
input -/		per acre tax				<u>T</u>	erm		
		P&I minus fu		ue per acre	per year		20	years	
	\$27J,000	her rivigo I	per year						
			· · · · · · · · · · · · · · · · · · ·			-			
		d Application				F	ut. Value		
-	Direct Lan	d Application		ACD I	4.	F	0.00%	after	
	Direct Lan	acres require	d for 1 N	MGD Irriga	tion		0.00%		2
	Direct Land 300 \$ 1.800	acres require per acre purc	d for 1 N	i improvem	ntion	40,000	0.00%	after)
	Direct Lan 300 \$ 1.800 \$ 200	per acre purc per acre purc	d for 1 Nchase and + O&M	i improvem per year	ent c \$ 5		0.00%	after	2
	Direct Land 300 \$ 1.800 \$ 200 \$169.75	per acre purc per acre purc per acre tax P&I minus fi	d for 1 Nchase and + O&M	i improvem per year	ent c \$ 5	40,000	0.00%	after	
	Direct Land 300 \$ 1.800 \$ 200 \$169.75	per acre purc per acre purc per acre tax P&I minus to per 1 MGD p	d for 1 Nchase and + O&M	i improvem per year ue per acre	ent c \$ 5	40,000	0.00%	after	

D. H & L	Discharge to POTW		
	Use Enzymatic as Basis (lowest cost)		
	for 1 MGD, annual cost is	\$ 1.361.000	

NREL Ethanol Waste Water Treatment

June 18, 1998 Rev. B

Costs for POTW Treatment of Waste Water

Per Denver Metro example costs (1997):

The cost for POTW treatment is the sum of the following parameters:

- a. \$362 per ton of TSS
- b. \$363 per MGD (monthly charge based on daily average flow) or \$363x12 = \$4356 per year per MGD average
- c. \$375 per ton of BOD₅
- d. \$695 per ton of Total Kjeldahl Nitrogen, TKN, (sum of organic and ammonia nitrogen)

These parameters are analysed on the daily average samples taken at the discharge into the POTW stream.

NREL I	Ethanoi Was	ste Wate	er Treati	nent		-	
	Cost Basis	for PO	TW Tre	atment	of	Waste 1	Water
POTW Co	sts:						
Case 1x	- Enzymati	units(d	aily cost	unit	Da	ily Cos	Annual Cost
	0.045815						
Flow =	1	MGD	S	36 3	S	12	
BOD =	9.85248	tons	S	37 5	\$	3.695	
	0.01						
bod/cod =	0.5				\$	3.730	\$ 1,361.565
							
Case Iv	Softwood	units(d	aily cost	/unit	Da	ily Cos	Annual Cost
TSS =	3.969245	tons	\$	362	\$	1.437	
Flow =	1.4	MGD	\$	3 63	\$	17	
BOD =	19.21392	tons	S	375	S	7.205	
	0.01						
					. \$	8.666	\$ 3,163,081
		· · · · · · · · · · · · · · · · · · ·					
Case 1z	- Hardwood	units(d	aily cost	/unit	Da	ily Cos	Annual Cost
	1.95755						
Flow =	2.2						
	43.23528		\$				
TKN =	0.01	tons	\$	695	\$	7	
					\$	16.955	\$ 6.188.733

Appendix C

Block Flow Diagram / Water Balance

COMPONENT	101 159,948 580 521,9 0.0% 47,9% 76,615 219 132,211 596 0.2% 1.1% 128,285 301 128,285 301 14,407 16.2% 6.3% 76.4% 262,611	211 47,518 222 0.0% 0.3% 98.9% 47,001 224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 1.1% 97.0% 22,090 Inlets	03 = 310 + 3 310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	215 16,907 0.0% 0.0% 100.0% 16,907 2001= 233 305 0 0.0% 0.0% 0.0% 100 + 311 + 3 11 129 0.0% 0.0% 416 580 3 0.0% 69.9%	311A 960 4 0.0% 100.0%	220 224,911 889 26.2% 9.4% 62.1% 139,558 237 2,492 0.0% 100.0% 2,492 420 39,211 169 5.6% 1,7% 90.5% 35,474	304C 876 0.0% 0.0% 1.7% 15 23 + 434 + 436 434 8	IN 270,034 185,263 243 65,191 304 0.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 1.7% 288	OUT 270,035 183,368 245 29,894 139 0.0% 0.3% 29,569 306 366,970 1,565 80,4% 295,226 440 322,922 0.0%	Outlets 229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 1.7% 90.5% 35,474	247 91,967 443 0.0% 0.0% 94,9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 4,263	301 343,934 1,407 16.2% 6.3% 76.4% 262,611	401 19,151 78 16.2% 6.3% 76.4% 14,623	COM PONE Total Flow Total Flow Insoluble Soi Soluble Soi Percent Water IN 457,489 365,095	olids	UNITS kg/hr gpm % % % kg/hr	247 91,967 443 0.0% 0.0% 94.9% 87,291	CC To To Ins Sc	535 13,834 64 0.0% 0.3% 98.9% 13,684 ITNET OM PONENT tal Flow tal Flow toluble Solids luble Solids recent Water atter	6.149
Total Flow	159,948 580 52.1% 0.0% 47.9% 76,615 219 132,211 596 0.2% 1.1% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 6.3% 76.4% 6.3% 76.4%	47,518 222 0.0% 0.3% 98.9% 47,001 220 224,911 889 26.2% 9.4% 139,558 20 310 8 0.0% 0.0% 411 22,766 103 0.2% 97.0% 22,090 Inlets	922 1 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	215 16,907 0.0% 0.0% 100.0% 16,907 2001= 233 305 0 0.0% 0.0% 0.0% 100 + 311 + 3 11 129 0.0% 0.0% 416 580 3 0.0% 69.9%	216 44,741 0.0% 0.0% 100.0% 100.0% 44,741 Inlets 233 + 235 642 1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0% Water M io	224,911 889 26.2% 9,4% 62.1% 139,558 237 2,492 0.0% 100.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0.0% 100.0%	242 1,128 8 0.0% 43,810 242 1,128 8 0.0% 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	270,034 185,263 243 65,191 304 0.0% 100.0% 65,191 Outlets 304C + 308 16,979 0.0% 1.7% 288	270,035 183,368 245 29,894 139 0.0% 0.3% 98.9% 29,569 306 366,970 1,565 8.6% 80.4% 295,226 440 322,922 0.0%	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	Total Flow Total Flow Insoluble Soc Soluble Soci Percent Water IN 457,489 365,095	oblids ids ter OUT 457,489	kg/hr gpm % %	91,967 443 0.0% 0.0% 94.9%	0.0% 0.1% 97.1% 43,810 Bu	13,834 64 0.0% 0.3% 98.9% 13,684 ITHER OM PONENT tal Flow tal Flow coluble Solids luble Solids reent Water	149
Total Flow	580 52.1% 60.00 47.9% 76,615 219 132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611	222 0.0% 0.3% 98.9% 47,001 220 224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 11,1% 97.0% 22,090	1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0	0.0% 0.0% 100.0% 16,907 2001= 233 305 0 0.0% 0.0% 100.0% 0.0% 100.	0.0% 0.0% 100.0% 100.0% 44,741 Inlets 233 + 235 642 1 0.0% 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% 100.0%	237 2492 0.0% 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474	0.0% 0.1% 97.1% 43,810 242 1,128 8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	243 65,191 304 0.0% 100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 1.7% 288	245 29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 80.4% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	Total Flow Insoluble Sci Soluble Soil Percent Wat Water IN 457,489 365,095	OUT 457,489	gpm % %	443 0.0% 0.0% 94.9%	0.0% 0.1% 97.1% 43,810 Bu CC Tc Tc In: Sc	64 0.0% 0.3% 98.9% 13,684 TIME OM PONENT tal Flow tal Flow tal Flow lible Solids lible Solids reent Water	0
Insoluble Solids	52.1% 0.0% 47.9% 47.9% 76,615 219 132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	0.0% 0.3% 98.9% 47,001 220 224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.0% 100.0% 16,907 2001 = 233 305 0 0.0% 0.0% 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	0.0% 100.0% 100.0% 44,741 Inlets 233 + 235 235 642 1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	26.2% 9.4% 62.1% 139,558 237 2,492 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0 0.0%	0.1% 97.1% 43.810 242 1,128 8 0.0% 0.0% 0.0% 1.7% 15 23 + 434 + 434 8 0.0% 0.0%	243 65,191 304 0.0% 0.0% 65,191 Outlets 304C + 308 30,87 0.0% 0.0% 0.17% 288	245 29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	Insoluble Sci Soluble Soli Percent Wat Water IN 457,489 365,095	OUT 457,489	% % %	0.0% 0.0% 94.9%	0.1% 97.1% 43,810 Bu CC Tc Tc Ins	0.0% 0.3% 98.9% 13,684 TITHER OM PONENT tal Flow tal Flow soluble Solids (Juble Solids reent Water	
Soluble Solids	0.0% 47.9% 76,615 219 132,211 596 0.2% 1.11% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611	0.3% 98.9% 47,001 220 224,911 889 26.2% 62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 1.11% 97.0% 22,090 Inlets	0.0% 227 715 1 100.0% 0.0% 310A 584 310A 584 100.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	0.0% 100.0% 16,907 2001 = 233 305 0 0.0% 0.0% 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	0.0% 100.0% 100.0% 44,741 Inlets 233 + 235 235 642 1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	9.4% 62.1% 139,558 237 2,492 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474	0.1% 97.1% 43.810 242 1,128 8 0.0% 0.0% 0.0% 1.7% 15 23 + 434 + 434 8 0.0% 0.0%	243 65,191 304 0.0% 0.0% 65,191 Outlets 304C + 308 30,87 0.0% 0.0% 0.17% 288	245 29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	IN 457,489 365,095	OUT 457,489	%	0.0% 94.9%	0.1% 97.1% 43,810 Bu CC Tc Tc Ins	0.3% 98.9% 13,684 TITHER DM PONENT tal Flow tal Flow soluble Solids luble Solids rcent Water	
Percent Water % Water kg/hr	47.9% 76,615 219 132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 401 19,151 78 16.2% 16.3% 76.4%	98.9% 47,001 220 224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 1.11% 97.0% 22,090 Inlets	227 715 1 100.0% 0.0% 0.0% In 03 = 310 + 3: 310A 584 3 0.0% 100.0% 100.0% 111,146 10 0.2% 2,146 10 0.2% 2,146 10 2,2082	100.0% 16,907 2001 = 233 305 0 0.0% 0.0% 10A + 311 + 3 311 129 0.0% 0.0% 416 580 3 0.0% 69.9%	100.0% 44,741 Inlets 233 + 235 642 1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% inlets 2005 = 4 417 227 1 0.0% 0.0%	62.1% 139,558 237 2,492 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0 0.0%	97.1% 43,810 242 1,128 8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	243 65,191 304 0.0% 0.0% 65,191 Outlets 304C + 308 30,87 0.0% 0.0% 0.17% 288	245 29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	IN 457,489 365,095 OUT	OUT 457,489	%	94.9%	97.1% 43,810 CC Tc Tc Ins Sc Pe	98.9% 13,684 ITHER DM PONENT tal Flow tal Flow soluble Solids luble Solids rcent Water	
Water	219 132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	220 224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	715 1 100.0% 0.0% 0.0% In 03 = 310 + 3 310A 584 3 0.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	16,907 2001= 233 305 0 0.0% 0.0% 10A + 311 + 3 311 129 0.0% 416 580 3 0.0% 69.9%	100 100	237 2,492 0.0% 100.0% 100.0% 2,492 420 39,211 169 5.6% 90.5% 35,474	242 1,128 8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	243 65,191 304 0.0% 0.0% 65,191 Outlets 304C + 308 30,87 0.0% 0.0% 0.17% 288	245 29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	IN 457,489 365,095	OUT 457,489			43,810 Bu CC Tc Tc Ins	13,684 DM PONENT tal Flow tal Flow coluble Solids luble Solids rcent Water	
COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow kg/hr	219 132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611	220 224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090	715 1 100.0% 0.0% 0.0% In 03 = 310 + 3 310A 584 3 0.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	2001 = 2033	Inlets 233 + 235 234 - 235 242 1 0.0% 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 0.0% 0.0%	237 2,492 0.0% 100.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474	242 1,128 8 0.0% 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	243 65,191 304 0.0% 0.0% 65,191 Outlets 304C + 308 30,87 0.0% 0.0% 0.17% 288	245 29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	IN 457,489 365,095	457,489	kg/hr	87,291	CC Tc Tc Ins Sc Pe	DM PONENT tal Flow tal Flow soluble Solids luble Solids rcent Water	
COMPONENT UNITS Total Flow kg/hr Total Flow gpm Insoluble Solids % Percent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Soluble Solids % Ferent Water kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Ferent Water kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Ferent Water kg/hr Total Flow gpm Insoluble Solids % Soluble Solids % Ferent Water kg/hr Total Flow gpm Insoluble Solids % Ferent Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Ferent Water kg/hr Total Flow gpm Insoluble Solids % Water kg/hr Total Flow gpm Insoluble Solids % Soluble Solids % Ferent Water kg/hr Total Flow gpm Insoluble Solids % Soluble Sol	132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 1411 22,766 103 0.2% 1.1% 97.0% 22,090	715 1 100.0% 0.0% 0.0% In 03 = 310 + 3 310A 584 3 0.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	233 305 0 0.0% 0.0% 10A + 311 + 3 311 129 0.0% 416 580 3 0.0% 69.9%	233 + 235 235 642 1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% 100.0% iniets 2005 = 4 417 227 1 0.0% 0.0%	2,492 0.0% 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0 0.0%	1,128 8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	65,191 304 0.0% 0.0% 100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 0.0% 288	29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	229 2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	365,095 OUT	457,489			CC To To Ins Sc	OM PONENT tal Flow tal Flow soluble Solids luble Solids rcent Water	
Total Flow	132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 1411 22,766 103 0.2% 1.1% 97.0% 22,090	715 1 100.0% 0.0% 0.0% In 03 = 310 + 3 310A 584 3 0.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	233 305 0 0.0% 0.0% 10A + 311 + 3 311 129 0.0% 416 580 3 0.0% 69.9%	311A 311A 311A 310.0% 0.0% 100.0% 100.0% 100.0%	2,492 0.0% 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0 0.0%	1,128 8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	65,191 304 0.0% 0.0% 100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 0.0% 288	29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	365,095 OUT	457,489			To To Ins So	tal Flow tal Flow soluble Solids luble Solids rcent Water	
Total Flow	132,211 596 0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	224,911 889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 1411 22,766 103 0.2% 1.1% 97.0% 22,090	715 1 100.0% 0.0% 0.0% In 03 = 310 + 3 310A 584 3 0.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	305 0 0.0% 0.0% 10A + 311 + 3 311 129 0.0% 0.0% 0.0% 0.0%	642 1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% 100.0% 11 ets 2005 = 4 417 227 1 0.0% 0.0%	2,492 0.0% 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0 0.0%	1,128 8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	65,191 304 0.0% 0.0% 100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 0.0% 288	29,894 139 0.0% 0.3% 98,9% 29,569 306 366,970 1,565 8.6% 3.1% 295,226	2,437 6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	91,967 443 0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	343,934 1,407 16.2% 6.3% 76.4% 262,611 2419+435 435 21,494 0.0% 2.3%	19,151 78 16.2% 6.3% 76.4% 14,623	365,095 OUT	457,489			To To Ins So	tal Flow tal Flow soluble Solids luble Solids rcent Water	
Total Flow	301 301 343,934 1,10% 343,934 1,407 16,2% 6,3% 76,4% 262,611 401 19,151 78 16,2% 6,3% 76,4%	889 26.2% 9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 1.11 22,766 103 0.2% 1.11% 97.0% 22,090 Inlets	1 100.0% 0.0% 0.0% 100.0% 310A 584 3 0.0% 100.0% 100.0% 430 2.146 10 0.2% 1.1% 97.0% 2,082	0 0.0% 0.0% 0.0% 10A + 311 + 3 311 129 0.0% 0.0% 416 580 3 0.0% 69.9%	1 0.0% 0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 1 0.0% 0.0%	0.0% 0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0 0.0%	8 0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	304 0.0% 0.0% 100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 1.7% 288	139 0.0% 0.3% 98.9% 29,569 306 366,970 1,565 8.6% 3.1% 80.4% 295,226	6 79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	0.0% 0.0% 94.9% 87.291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	1,407 16.2% 6.3% 76.4% 262,611	78 16.2% 6.3% 76.4% 14,623	365,095				To To Ins So	tal Flow tal Flow soluble Solids luble Solids rcent Water	
Insoluble Solids	0.2% 1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611	26.2% 9.4% 139,558 20 310 8 0.0% 0.0% 411 22,766 103 0.2% 97.0% 22,090 Inlets	100.0% 0.0% 0.0% In 003 = 310 + 3: 310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.11% 97.0% 2,082	0.0% 0.0% 0.0% 10A + 311 + 311 129 0.0% 0.0% 416 580 3 0.0% 69.9%	0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0.0% 100.0%	0.0% 0.0% 2004 = 304C 876 0.0% 1.7% 15	0.0% 0.0% 100.0% 65,191 Outlets 304C + 308 16,979 0.0% 1.7% 288	0.0% 0.3% 98.9% 29,569 306 366,970 1,565 8.6% 3.1% 80.4% 295,226	79.9% 1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	0.0% 0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0%	16.2% 6.3% 76.4% 262,611 2419 + 435 435 21,494 0.0% 2.3%	16.2% 6.3% 76.4% 14,623	ОПТ	364,973			To Ins So Pe	tal Flow soluble Solids luble Solids rcent Water	
Soluble Solids	1.1% 97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	9.4% 62.1% 139,558 20 310 8 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	0.0% In 03 = 310 + 3 310A 3	0.0% 10A + 311 + 3	0.0% 311A 311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	0.0% 100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 423 30 0.0% 100.0%	0.0% 2004 = 304C 876 0.0% 1.7% 15 23 + 434 + 434 434 8	0.0% 100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 1.7% 288	0.3% 98.9% 29,569 306 366,970 1,565 8.6% 80.4% 295,226 440 322,922	1.5% 18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 1.7% 90.5%	0.0% 94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0%	6.3% 76.4% 262,611 2419 + 435 435 21,494 0.0% 2.3%	6.3% 76.4% 14,623	ОПТ	364,973			Ins Sc Pe	oluble Solids luble Solids rcent Water	
Percent Water % kg/hr	97.0% 128,285 301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 6.3% 76.4%	62.1% 139,558 20 310 8 0.0% 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090	In 03 = 310 + 3 310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	0.0% 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	311A 311A 960 4 0.0% 100.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	100.0% 2,492 420 39,211 169 5.6% 1.7% 90.5% 35,474 16 + 417 + 42 423 30 0 0.0%	2004 = 304C 876 0.0% 0.0% 1.7% 15	100.0% 65,191 Outlets 304C + 308 308 16,979 0.0% 0.0% 1.7% 288	98.9% 29,569 306 366,970 1,565 8.6% 3.1% 80.4% 295,226 440 322,922	18.4% 448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	94.9% 87,291 OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	76.4% 262,611	76.4% 14,623	ОПТ	364,973			Pe	rcent Water	
Water kg/hr Fermentation COMPONENT UNITS Total Flow gpm Insoluble Solids % COMPONENT UNITS COMPONENT UNITS Total Flow kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Percent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water kg/hr Total Flow gpm Insoluble Solids % Soluble Solids % Fercent Water kg/hr Total Flow gpm Insoluble Solids % Fercent Water kg/hr Total Flow gpm Insoluble Solids % Fercent Water kg/hr Total Flow gpm Insoluble Solids % Fercent Water kg/hr Total Flow gpm Insoluble Solids % Fercent Water kg/hr Total Flow gpm Insoluble Solids % Soluble Solids %	301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	139,558 20 310 8 0.0% 0.0% 411 22,766 103 0.2% 97.0% 22,090	03 = 310 + 3 310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	10A + 311 + 3 311 129 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	2,492 420 39,211 169 5,6% 1,7% 90,5% 35,474 423 30 0 0,0% 100.0%	304C 876 0.0% 0.0% 1.7% 15 23 + 434 + 436 434 8	Outlets 304C + 308 308 16,979 0.0% 0.0% 1.7% 288	306 366,970 1,565 8.6% 3.1% 80.4% 295,226 440 322,922	448 IN 384,826 298,085 420 39,211 169 5.6% 90.5%	OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	262,611 2419 + 435 435 21,494 0.0% 0.0% 2.3%	14,623	ОПТ	364,973					
Fermentation COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Percent Water % Water kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids %	301 343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3%	20 310 8 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	03 = 310 + 3 310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	10A + 311 + 3 311 129 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	420 39,211 169 5.6% 1.7% 90.5% 35,474 16+417+42 423 30 0 0.0% 100.0%	304C 876 0.0% 0.0% 1.7% 15 23 + 434 + 436 434 8	Outlets 304C + 308 308 16,979 0.0% 0.0% 1.7% 288	306 366,970 1,565 8.6% 3.1% 80.4% 295,226	1N 384,826 298,085 298,085 420 39,211 169 5.6% 1.7% 90.5%	OUT 384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	419 + 435 435 21,494 0.0% 2.3%	IN	ОПТ				W	ater	
COMPONENT UNITS Total Flow kg/hr Total Flow gpm Insoluble Solids % Soluble Solids % Water kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Percent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids %	343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	310 8 0.0% 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090	03 = 310 + 3 310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	10A + 311 + 3 311 129 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	39,211 169 5.6% 1.7% 90.5% 35,474 16 + 417 + 42 423 30 0 0.0%	304C 876 0.0% 0.0% 1.7% 15 23 + 434 + 436 434 8	304C + 308 308 16,979 0.0% 0.0% 1.7% 288	366,970 1,565 8.6% 3.1% 80.4% 295,226 440 322,922	384,826 298,085 420 39,211 169 5.6% 1.7% 90.5%	384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Total Flow	343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	310 8 0.0% 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090	310A 584 3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	311 129 0.0% 0.0% 0.0% 416 580 3 0.0% 69.9%	311A 960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	39,211 169 5.6% 1.7% 90.5% 35,474 16 + 417 + 42 423 30 0 0.0%	304C 876 0.0% 0.0% 1.7% 15 23 + 434 + 436 434 8	308 16,979 0.0% 0.0% 1.7% 288 3 436 157	366,970 1,565 8.6% 3.1% 80.4% 295,226 440 322,922	384,826 298,085 420 39,211 169 5.6% 1.7% 90.5%	384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Total Flow	343,934 1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	8 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	430 2,146 10 0.2% 1.1% 97.0% 2,082	129 0.0% 0.0% 416 580 3 0.0% 69.9%	960 4 0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	39,211 169 5.6% 1.7% 90.5% 35,474 16 + 417 + 42 423 30 0 0.0%	876 0.0% 0.0% 1.7% 15 23 + 434 + 434 434 8 0.0%	16,979 0.0% 0.0% 1.7% 288 436 157 0.0%	366,970 1,565 8.6% 3.1% 80.4% 295,226 440 322,922	384,826 298,085 420 39,211 169 5.6% 1.7% 90.5%	384,825 295,529 Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Total Flow gpm Insoluble Solids % Soluble Solids % Fercent Water % Water kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Fercent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Fercent Water % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Total Flow gpm Insoluble Solids % Soluble Solids % Water kg/hr COM PONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids %	1,407 16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	0.0% 0.0% 0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090	3 0.0% 100.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	0.0% 0.0% 416 580 3 0.0% 69.9%	Inlets 2005 = 4 417 227 1 0.0%	169 5.6% 1.7% 90.5% 35,474 16 + 417 + 42 423 30 0 0.0% 100.0%	0.0% 0.0% 1.7% 15 23 + 434 + 436 434 8	0.0% 0.0% 1.7% 288	1,565 8.6% 3.1% 80.4% 295,226 440 322,922	298,085 420 39,211 169 5.6% 1.7% 90.5%	Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Insoluble Solids	16.2% 6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	0.0% 100.0% 430 2,146 10 0.2% 1.1% 97.0% 2,082	0.0% 416 580 3 0.0% 69.9%	0.0% 100.0% Inlets 2005 = 4 417 227 1 0.0% 0.0%	5.6% 1.7% 90.5% 35,474 16+417+42 423 30 0 0.0% 100.0%	0.0% 1.7% 1.5 23 + 434 + 434 434 8 0.0%	0.0% 1.7% 288 3 436 157 0.0%	8.6% 3.1% 80.4% 295,226 440 322,922 0.0%	420 39,211 169 5.6% 1.7% 90.5%	Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Soluble Solids	6.3% 76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	0.0% 411 22,766 103 0.2% 1.1% 97.0% 22,090 Inlets	430 2,146 10 0.2% 1.11% 97.0% 2,082	0.0% 416 580 3 0.0% 69.9%	Inlets 2005 = 4 417 227 1 0.0% 0.0%	1.7% 90.5% 35,474 16+417+42 423 30 0 0.0% 100.0%	0.0% 1.7% 1.5 23 + 434 + 434 434 8 0.0%	0.0% 1.7% 288 3 436 157 0.0%	3.1% 80.4% 295,226 440 322,922 0.0%	420 39,211 169 5.6% 1.7% 90.5%	Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Percent Water	76.4% 262,611 401 19,151 78 16.2% 6.3% 76.4%	411 22,766 103 0.2% 1.1% 97.0% 22,090	430 2,146 10 0.2% 1.1% 97.0% 2,082	416 580 3 0.0% 69.9%	Inlets 2005 = 4 417 227 1 0.0% 0.0%	90.5% 35,474 16+417+42 423 30 0 0.0% 100.0%	1.7% 15 23 + 434 + 436 434 8 0.0%	1.7% 288 3 436 157	80.4% 295,226 440 322,922 0.0%	420 39,211 169 5.6% 1.7% 90.5%	Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Water kg/hr Cellulase COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water kg/hr COMPONENT UNITS Total Flow kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Percent Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % COMPONENT UNITS Total Flow gpm Insoluble Solids % COMPONENT UNITS Total Flow gpm Insoluble Solids % Water kg/hr COMPONENT UNITS Total Flow gpm Insoluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Soluble Solids % Soluble Solids %	401 19,151 78 16.2% 6.3% 76.4%	22,766 103 0.2% 1.1% 97.0% 22,090	2,146 10 0.2% 1.1% 97.0% 2,082	580 3 0.0% 69.9%	2005 = 4 417 227 1 0.0% 0.0%	35,474 16 + 417 + 42 423 30 0 0.0% 100.0%	15 23 + 434 + 436 434 8	288 3 436 157 0.0%	295,226 440 322,922 0.0%	420 39,211 169 5.6% 1.7% 90.5%	Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
COMPONENT	401 19,151 78 16.2% 6.3% 76.4%	22,766 103 0.2% 1.1% 97.0% 22,090	2,146 10 0.2% 1.1% 97.0% 2,082	580 3 0.0% 69.9%	2005 = 4 417 227 1 0.0% 0.0%	16 + 417 + 42 423 30 0 0.0% 100.0%	23 + 434 + 436	6 436 157	440 322,922 0.0%	420 39,211 169 5.6% 1.7% 90.5%	Outlets 2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Total Flow	19,151 78 16.2% 6.3% 76.4%	22,766 103 0.2% 1.1% 97.0% 22,090	2,146 10 0.2% 1.1% 97.0% 2,082	580 3 0.0% 69.9%	2005 = 4 417 227 1 0.0% 0.0%	423 30 0 0.0% 100.0%	434 8 0.0%	436 157 0.0%	0.0%	39,211 169 5.6% 1.7% 90.5%	2007 = 419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%								
Total Flow	19,151 78 16.2% 6.3% 76.4%	22,766 103 0.2% 1.1% 97.0% 22,090	2,146 10 0.2% 1.1% 97.0% 2,082	580 3 0.0% 69.9%	417 227 1 0.0% 0.0%	423 30 0 0.0% 100.0%	434 8 0.0%	436 157 0.0%	0.0%	39,211 169 5.6% 1.7% 90.5%	419 307,281 0.0% 0.0% 1.4%	435 21,494 0.0% 0.0% 2.3%			_ - - - -					
Total Flow	19,151 78 16.2% 6.3% 76.4%	22,766 103 0.2% 1.1% 97.0% 22,090	2,146 10 0.2% 1.1% 97.0% 2,082	580 3 0.0% 69.9%	227 1 0.0% 0.0%	30 0 0.0% 100.0%	0.0%	0.0%	0.0%	39,211 169 5.6% 1.7% 90.5%	0.0% 0.0% 0.0% 1.4%	21,494 0.0% 0.0% 2.3%								
Total Flow	78 16.2% 6.3% 76.4%	103 0.2% 1.1% 97.0% 22,090	10 0.2% 1.1% 97.0% 2,082	3 0.0% 69.9%	1 0.0% 0.0%	0 0.0% 100.0%	0.0%	0.0%	0.0%	169 5.6% 1.7% 90.5%	0.0% 0.0% 1.4%	0.0% 0.0% 2.3%	367,986	367,986						
Insoluble Solids	16.2% 6.3% 76.4%	0.2% 1.1% 97.0% 22,090	0.2% 1.1% 97.0% 2,082	0.0% 69.9%	0.0%	0.0%				5.6% 1.7% 90.5%	0.0%	0.0%								
Soluble Solids	6.3% 76.4%	1.1% 97.0% 22,090 Inlets	1.1% 97.0% 2,082	69.9%	0.0%	100.0%				1.7% 90.5%	0.0%	0.0%			1					
Percent Water	76.4%	97.0% 22,090 Inlets	97.0% 2,082		Water Mix		0.076	0.076	0.076	90.5%	1.4%	2.3%		1	-					
Water		22,090 Inlets	2,082	Trreated		ĸ														
Total Flow				Trreated		κ .		•		_		501	38,794	40,238	-					
Total Flow					Outlets						Re	cycle Water	Mix and S	olit	_					
Total Flow		624					1			Inlets			Outlets							
Total Flow		624								Inlets			Outlets							
Total Flow gpm Insoluble Solids % % Soluble Solids % % Percent Water % Water kg/hr	251		943	243	604	941	IN	OUT	516	603	604	219	411	430	IN	OUT				
Insoluble Solids	47,098	167,894	112,929	65,191	81,215	181,370	327,921	327,776	30,943	44,965	81,215	132,211	22,766	2,146	157,123	157,123	3			
Soluble Solids	0.0%	743 0.0%	503 0.0%	304 0.0%	359 0.0%	0.0%	_	+	152 0.0%	199 0.9%	359 0.0%	596 0.2%	103 0.2%	10 0.2%			_			
Percent Water	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%			0.7%	3.5%	0.0%	1.1%	1.1%	1.1%						
COM PONENT UNITS Total Flow kg/hr Total Flow gpm Insoluble Solids % Soluble Solids %	98.9%	99.8%	100.0%	100.0%	100.0%	100.0%			96.4%	92.1%	100.0%	97.0%	97.0%	97.0%						
Total Flow kg/hr Total Flow gpm Insoluble Solids % Soluble Solids %	46,586	167,505	112,929	65,191	81,215	181,370			29,822	41,420	81,215	128,285	22,090	2,082						
Total Flow kg/hr Total Flow gpm Insoluble Solids % Soluble Solids %				Water					Cooling	Tower										
Total Flow kg/hr Total Flow gpm Insoluble Solids % Soluble Solids %	Inlet		Outlets				Inlet		Outlets											
Total Flow kg/hr Total Flow gpm Insoluble Solids % Soluble Solids %	904	524	811	943	IN	OUT	941	942	944	949	IN	OUT								
Total Flow gpm Insoluble Solids % Soluble Solids %	196,676	13,042	70,705	112,929	196,676	196,676	181,370	10,655	16,488	154,227	181,370	181,370								
Soluble Solids %	874	57	312	503	<u> </u>		807	47	73											
	0.0%	0.0%	0.0%	0.0%			0.0%	0.0%	0.0%	0.0%										
	0.0%	0.0%	0.0%	0.0%	1	<u> </u>	0.0%	0.0%	0.0%	0.0%										
Percent Water % Water kg/hr	100.0%	100.0%	100.0%	100.0%	}	+	100.0%	100.0%	100.0%	100.0%	+									
Distillation kg/iii	,	,	,,,,,,,,	,020		1	, , , , ,	,	, 100	,										
		Inle				Outle	ts													
COM PONENT UNITS	306	2004 = 304 304C	4C + 308 308	524	515	516	518A	550	IN I	OUT										
Total Flow kg/hr	366,970	876	16,979	13,042	18,565	30,943	330,442			97,867										
Total Flow gpm	1,565	0.0%	0.09/	57	108	152	1,502	0.0%												
Insoluble Solids % Soluble Solids %	8.6% 3.1%	0.0%	0.0%	0.0%	0.0%	0.0%	9.6%	0.0%	-											
Percent Water %	80.4%	1.7%	1.7%	100.0%	0.5%	96.4%	84.3%	1.0%												
Water kg/hr	295,226	15 Ev:	288 aporator #1	13,042	92	29,822	278,485	173 Centrifu		08,572					Evanorat	re 2 9 2				
⊢	Inlet	Oulte	•	1	-	Inlets		Outlets	9 5			Inlets	-		Evaporato			-		\rightarrow
		Oute						2411010				anoto			Outle					
COM PONENT UNITS	518A	525	526	IN	OUT	525	601	603	610	IN (OUT 5	26 61	0 21	251	245	5	31 5	35	N OL	JT
	330,442	278,666	51,776	330442	330442	278,666	98,808					,776 134,							,670 186,	
Total Flow gpm	1,502	1,213				1,213	377	199	596			59						64		二
Insoluble Solids %	9.6%	11.4%	0.0%			11.4%	30.5%	0.9%	0.9%			.0% 0.9						.0%		\Box
Soluble Solids %	3.3%	3.8%	0.7%			3.8%	4.4%	3.5%	3.5%			.7% 3.5						.3%		
Percent Water % Water kg/hr	84.3%	81.7% 227,738	98.0% 50,747	278485	278485	81.7% 227,738	62.8% 62,056	92.1%	92.1% 24,261 2	27,738 22		8.0% 92. ,747 124,						3.9% ,684 175	,008 175,	008
water kg/nr	278 495	441,130	30,141	210400	210400	221,130	02,000	71,420	∠+,∠∪1 Z	21,130 22	1,130 50	,,,+, 124,.	201 41,0	40,58	29,50	38,	101 13	,004 1/5	,000 1/5,	500
	278,485																			
	278,485																			
	278,485																			

		1	nlets						Outl	ets			
				2008 = 63	0 + 631								
	535	626		630	631	821	944	615	620	623	624	IN	OUT
4	13,834	149,904		225	1	6,566	16,488	2,583	152,736	896	167,894	324,109	324,109
	64			1	0	44	73			3	743		
,	0.0%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	30.0%	0.0%		
,	0.3%	0.0%		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%		
%	98.9%		T			100.0%	100.0%	4.4%	1.6%	69.9%	99.8%		
0	13,684					6,566	16,488	113	2,378	626	167,505	167,839	170,622
Bu	ner						nlets			Ou	itlets		
		Lur	IITS	531	601			804	840			IN	I OUT
CO	M PONENT		NITS	531 48,325	601	615	623 897	804 469,285	840	810 618,601	809 1,298	IN 619,899	OUT 619,89
CO	M PONENT	kç				615	623			810	809		
CO Tot	M PONENT al Flow	kı g	g/hr	48,325	98,808	615	623 897			810	809 1,298		
CO Tot Tot	M PONENT al Flow al Flow	kç g	g/hr pm	48,325 213	98,808 377	615 2,583	623 897 3	469,285	1	810 618,601	809 1,298 3		
Tot Tot Inso	M PONENT al Flow al Flow oluble Solids	k(g/hr pm %	48,325 213 2.4%	98,808 377 30.5%	615 2,583 0.0%	623 897 3 30.0%	469,285 0.0%	0.0%	810 618,601 0.0%	809 1,298 3 100.0%		

Boiler								
	[Inlet		Out	lets		1	
			2002 = 2	15 + 216				
COMPONENT	UNITS	811	215	216	237	821	IN	OUT
Total Flow	kg/hr	70,748	16,907	44,741	2,492	6,613	70,748	70,752
Total Flow	gpm	312				44		
Insoluble Solids	%	0.0%	0.0%	0.0%	0.0%	0.0%		
Soluble Solids	%	0.0%	0.0%	0.0%	0.0%	0.0%		
Percent Water	%	100.0%	100.0%	100.0%	100.0%	100.0%		
Water	kg/hr	70,748	16,907	44,741	2,492	6,613	70,748	70,752

Overall Balance																				•
							_				Inlets	_						_		
					2001 = 2	233 + 235		20	03 = 310 + 31	0A + 311 + 3	11A			2005 = 416	+ 417 + 423	+ 434 + 436				
COMPONENT	UNITS	101	212	227	233	235	242	310	310A	311	311A	440	416	417	423	434	436	904	626	804
Total Flow	kg/hr	159,948	922	715	305	642	1,128	8	584	129	960	322,922	580	227	30	8	157	196,676	149,904	469,3
Overall Balance	•		•	•		•	•	•	•	•	•				-	•	•		-	-
			Outlets																	
COMPONENT	UNITS	229	419	435	515	550	620	810	809	949	942	IN	OUT							
Total Flow	kg/hr	2,437	307,281	21,494	18,565	17,917	152,740	618,601	1,298	155,326	10,731	1,306,305	1,306,390							

	DESCRIPTION	DATE 5/98	, A	NATIONAL RENEWABLE
-	INITIAL ISSUE	_	💜 🕻 NR:	ENERGY LABORATORY
	NREL YEAR 2000 CASE DESIGN REPORT	10/98 2/99	Biotechi	nology Center For Fuels And Chemicals
Ť	DESIGN NEI ON	1 2/00	CEC	TION ACOO
				TION A600
			Overall	<u>Water Balance</u>
			r9901f.xls	PFD-P100-A698 C
		LL 2/24/99	199011.815	F1D-F100-A030 0

Appendix D

Reasons for Anaerobic / Aerobic Process Selection

APPENDIX D

PHOENIX BIO-SYSTEMS, INC.

at ICM, Inc.:

4800 West 80th Avenue, Suite 202 310 North First Street, P.O.

Box 397

Westminster, Colorado 80030 Colwich, Kansas

67030

Phone: 303/426-7414 Phone:

316/796-0900

Fax: 303/426-7431 Fax:

316/796-0092

ANAEROBIC BIO-REACTORS FOR HIGH PERFORMANCE WASTEWATER TREATMENT IN BIOMASS TO ETHANOL OPERATIONS

Industrial Wastewater

Waste "strength" may be measured by five (5) day Biological Oxygen Demand (BOD₅), Chemical Oxygen Demand (COD) or Total Organic Carbon (TOC). Any of these reflect the amount of carbon requiring removal in a given waste water. Chemical Oxygen Demand (COD) describes the amount of oxygen required to completely oxidize all waste (primarily carbon) to CO₂ and is usually used to describe the efficiency of biomethanation.

Waste water streams vary in strength from a few hundred milligrams per liter (mg/l) COD to hundreds of thousands of mg/l COD. Some examples of waste waters are:

TYPE OF WASTE	COD
Municipal Waste Waters	150 - 300 mg/l
Cheese Plant Wash Waters	2,000 - 5,000 mg/l
Cheese Whey	~ 60,000 mg/l
Cheese Whey Permeate	50,000 - 100,000 mg/l
Waste Beer	~ 60,000 mg/l
Brewery Wash Waters	~ 2,000 mg/l
Soft Drink Processing Waste Waters	~ 20,000 mg/l
Potato Processing Waste Water	~ 10,000 mg/l
Vegetable Processing Brine Waste	~ 10,000 mg/l
Oil Operations Waste Water	10,000 - 100,000 mg/l
Winery Waste Water	~ 20,000 mg/l
Can Manufacture (Solvent) Waste	~ 100,000 mg/l

Pharmaceutical Waste Water Airport Deicer Run-off Fuel Alcohol Plant Condensate Distillery Bottoms Water 10,000 - 100,000 mg/l 10,000 - 300,000 mg/l 1,000 - 5,000 mg/l ~ 30,000 mg/l

The list above shows that most industrial waste waters carry far greater organic loading than does municipal sewage. Most of these waste waters are extremely expensive to treat by conventional methods and many industrial manufacturers incur high surcharge costs for discharge to POTW's (Publicly Owned Treatment Works), or in some cases may be banned from public discharge because of the unacceptable loading.

Fuel ethanol operations, whether grain or biomass based, will produce either still bottoms, centrifugate, or evaporator condensate, depending upon the design of the distillery, which will carry high organic waste loads. Centrifuges have been used for the separation of suspended solids from still bottoms, and evaporators have been used for the recovery of most dissolved solids from centrifugate in grain based fuel ethanol plants. In spite of these conservation methods, these plants produce evaporator condensate wastewater, which will usually have COD concentrations of over 1,000 mg/l, and often as high as 5,000 mg/l.

In a biomass-based fuel ethanol plant, non-fermentable solids will be significant, resulting in still bottoms carrying a very high organic load. Even if centrifugation and/or evaporation are applied, wastewater streams from these plants will be very high in COD. In many cases, biomass plants may be located too distant from a POTW for access and in others, loading is likely to be greater than a local POTW can accommodate.

Anaerobic bio-methanation provides a logical and cost-effective means of addressing these wastewaters.

Advantages of Anaerobic Systems

Biomethanation describes the production of biogas by certain micro-organisms using organic (carbonaceous) substances under anaerobic conditions. Biogas consists of a mixture of methane (CH₄) and carbon dioxide (CO₂). The production of methane gas represents a bio-thermodynamic conservation of energy. That is, the energy present in dissolved organic waste is conserved as methane

Figure 1 depicts the metabolic pathways involved in the breakdown of complex organic molecules in the methanogenic conversion process. Three (3) groups of microorganisms are involved in the methanogenic consortium, hydrolytic bacteria, acetogenic bacteria, and finally, methanogenic bacteria. A number of researchers believe that other micro-organisms, such as sulfate reducing bacteria and hydrogen producing bacteria, may also contribute to the methanogenic consortiums' activity.

Bio-methanation will produce less than ten (10) percent of the waste sludge that is produced by activated sludge or aerobic biological waste water treatment methods. Further, bio-methanation requires only a fraction of the operating horsepower and

facility space. Furthermore, the production of biogas offers an energy source which can be utilized in the operating plant to supplement natural gas.

The attached analysis (Table 1) compares the operating costs of bio-methanation verses conventional aerobic treatment for the same hypothetical wastewater. Note that the horsepower, chemical and sludge management costs for the aerobic treatment system are significantly higher. In addition, the aerobic facility would be much larger and more operator and maintenance intensive. Thus, the application of anaerobic treatment technology provides a significant savings opportunity for the removal of most dissolved organic compounds.

General Anaerobic System Description

Anaerobic bio-methanation is not a new concept in wastewater treatment. This technique has been used for over a century in municipal wastewater plants for the digestion and stabilization of waste sludges. These anaerobic digesters are today known as low-rate solids digesters. Although the same biochemical reactions are employed, the digestion of suspended solids requires a much longer residence time than is required in modern high-rate systems. The slow growing anaerobic consortium is an advantage with respect to sludge (bio-solids) generation, however, in high-rate systems it is necessary to maintain the slow growing culture in a reactor to achieve efficient performance.

The first of these modern technologies, known as upflow anaerobic sludge blanket technology (UASB), was pioneered in the Netherlands in the 1970's. This technique takes advantage of a granulated anaerobic sludge or bio-culture, which remains fixed in the base of a reactor while wastewater containing dissolved organic matter is passed upward through the sludge bed. The success of this technology has led to further refinements in the form of expanded-bed and fluid bed systems. At the same time, packed-bed systems have also been developed, which rely on a matrix of plastic or other heavier-than-water material to act as a surface for colonization by anaerobic cultures. The objective in all these systems is really the same; retain high concentrations of active anaerobic biomass in the reaction zone.

The result of these technological developments is that several manufacturers world-wide, produce and market high-rate anaerobic treatment systems for the removal of dissolved organics from waste water. These high-rate systems operate reliably with hydraulic retention times as low as four (4) hours. Most obtain eighty (80) to ninety-five (95) percent reduction of COD.

A general system flow would include: equalization, recirculated fluid mixing, the anaerobic reactor, nutrient supplementation systems, pH, temperature, and flow control systems, and bio-gas scrubbing, management, and flaring systems.

Diagram 1 represents a general flow for the application of biomethanation and aerobic polishing for a typical fuel ethanol plant. Where COD or BOD_5 are very high and discharge limits are very low for these parameters, both anaerobic and aerobic systems may be required. That is, where more than ninety (90) percent COD reduction is required for discharge, aerobic polishing of the waste water is needed but will be far less expensive as it addresses only a fraction of the original waste load.

Biogas Production

In conventional biomethanation systems, biogas will range from fifty-five (55) to seventy (70) percent methane (CH₄), the remainder being carbon dioxide (CO₂). Maximum theoretical methane yield is 0.35 liters of methane per gram of COD converted.

In many high-rate systems, methane averages over eighty-five (85) percent in biogas. This is thought to be due to the differences associated with solids digestion and the digestion of dissolved organic compounds. One manufacturer, who uses a proprietary carbon dioxide removal system, routinely reports methane concentrations in-excess of ninety (90) percent.

Most commercial systems utilize emergency flare equipment, which are based upon system pressures. When economically feasible, biogas will be utilized in boilers, natural gas dryers, and sometimes in internal combustion engines to generate electricity. In these cases, emergency flares are only used when biogas production exceeds requirements.

Since these biological systems operate optimally at temperatures between eighty-five (85) and one hundred (100) degrees Fahrenheit, some of the biogas produced may be used to heat the reactors through the use of simple gas fired hot water heaters.

In grain-based fuel ethanol plant applications, where bio-methanators have been used to treat hot (160 to 200° F) evaporator condensate prior to discharge, cooling of the condensate stream is required. In these applications, all of the produced biogas has been used as supplemental spent grain dryer fuel. In biomass based fuel ethanol plants, it is unlikely that spent grain dryers will be employed. Therefore, biogas may be used as supplemental boiler fuel.

COMBINED ANAEROBIC-AEROBIC BIOLOGICAL TREATMENT

Figure 1 Steps in the anaerobic digestion process

Table 1 - Anaerobic Aerobic Treatment -

Anaerobic Treatment followed by Aerobic Bio-Tower

	ANAEI BIO-METI		AEROBIC ACTIVATED SLUDGE TREATMENT			
PARAMETERS	AMOUNTS	DAILY COST	AMOUNTS	DAILY COST		
Flow, Gallons Per Minute (GPM)	300.00		300.00			
Flow, Gallons Per Day (GPD)	432,000.00		432,000.00			
Chemical Oxygen Demand (COD) mg/l	3 ,000.0 0		3,000.00			
Biological Oxygen Demand (BODs) mg/l	2,100.00		2,100.00			
Pounds Per Day COD	10,804.76		10,804.76			
Pounds Per Day BOD	7,563.33		7,563.33			
Inlet Temperature	25C		37C			
Total Nitrogen mg/l	0.00		0.00			
Total Phosphate mg/l	0.00		0.00			
COD Space Loading Rate g/l/d	12.00		0.75			
COD Reduction	0.90		0.90			
Residual COD mg/l	300.00		300.00			
Horsepower Required:						
Blower Horsepower	3.00		675.30			
Pumping & Other Horsepower	80.00		150.00			
Total Horsepower	83.00		825.30			
Cost per kwh	0.05		0.05			
Kwh per day	1,474.0 8	\$73.70	14,657.28	\$732.86		
Chemicals Required, Ibs/day:						
Nitrogen	29.17	\$5.83	388.97	\$77.79		
Phosphate	9.72	\$1.56	129.66	\$20.75		
Micro-Nutrients	1.62	\$0.81	21.61	\$6.48		
Caustic Ibs/day Required	540.24	\$102.65	0.00	\$0.00		
Polymer @ \$ 2.50/lb	0.00	\$0.00	10.00	\$25.00		
Chlorine			0.00	\$0.00		

Table 1 - Anaerobic Aerobic Treatment -

PARAMETERS	AMOUNTS	DAILY COST	AMOUNTS	DAILY COST
Sludge (Biomass) Generation:				
Dry Weight Yield, Ibs/day	324.14		4,321.90	
Wet Weight of Sludge, lbs/day	6,482.85		432,190.31	
Sludge Total Solids	5%		1%	
Sludge Yield on COD	3%		40%	
Sludge Disposal :				
Dewatering @ \$ 0.XX per 1000 lb wet weight	0.03	\$1.94	0.03	\$129.66
Volume Reduction	80%		80%	
Disposal Volume	155.28		10,351.86	
Disposal @ \$ 0.0X/gal	0.03	\$4.66	0.03	\$310.56
Bio-Gas Produced (CFD):	55,813.64		0.00	
Methane Yield (85%) CFD	47,441.59		0.00	
Less Heating Requirement	4,000.00			
Net Methane for energy	43,441.59			
Bio-Gas Credit (\$2.50/MMBTU Methane)		(\$108.60)	0.00	\$0.00
Labor:				
Cost per hour (\$)	12.00		12.00	
Manhours / Day	2.00	\$24.00	16.00	\$192.00
Maintenance parts	25.00	\$30.00	50.00	\$60.00
Sewer Surcharge:				
Flow @ \$0.XX /1000 gal	0.50	\$216.00	0.50	\$216.00
Allowable BOD Concentration mg/l	300.00		300.00	·
BOD @ \$0.XX /lb in excess	0.00	\$0.00	0.00	\$0.00
Allowable TSS Concentration mg/l	250.0 0	·	250.0 0	
TSS @ \$0.XX /lb	0.00	\$0.00	0.00	\$0.00

Table 1 - Anaerobid | Aerobic Treatment -

Total Daily Co	ost	\$352.55		\$1,771.10	
Annual Cost (Days per year)	350.00	\$1 23,392. 23	350.00	\$619,884.76	
Net Annual Cost Difference					\$ 496,492.53
PARAMETERS	AMOUNTS		AMOUNTS		
Unit Operations Required: Equalization Tank (gal) Main Reactor Size (gal) Clarifier (gal)	86,400.00 108,000.00 N/A		86,400.00 1,728,000.00 90,000.00		

Appendix E

Design Basis for Alternative V	Vaste Water	Treatment S	vstems	
	I	Enzymatic So	ftwood Ha	ardwood
Daily Average Flow	MGD	1	1.4	2.2
Design Daily Peak Flow	MGD	2	2.8	4.4
Design Weekly Peak Flow	MGD	1.8	2.52	3.96
Design Monthly Peak Flow	MGD	1.5	2.1	3.3
Design Annual Peak Flow	MGD	1.25	1.75	2.75
Daily Average TSS				
	ι	ise similar fa	ctors for p	eak flow
Daily Average BOD				

Appendix F

Cost Estimates

		Equ	ipment Summa	ary				
Eq No.	Eq Description	Drawing	Mat. C	No.	Unit	Total Pur	I Fact	Installed
A-602	Equalization Basin Agitator	A602	SS	1	\$28,400	\$28,400	1.2	\$34,080
A-606	Anerobic Digestor Agitator	A602	SS	4	\$30,300	\$121,200	1.2	\$145,440
A-608	Aerobic Digestor Aerator	A603	CS	16	\$31,250	\$500,000	1.4	\$700,000
A-630	Recycle Water Tank Agitator	A601	CS	1	\$5,963	\$5,963	1.3	\$7,752
C-601	Lignin Wet Cake Screw	A601	CS	1	\$31,700	\$31,700	1.4	\$44,380
C-614	Aerobic Sludge Screw	A603	CS	1	\$5,700	\$5,700	1.4	\$7,980
H-602	Anerobic Digestor Feed Cooler	A602	SS	1	\$175,000	\$175,000	2.1	\$367,500
M-604	Nutrient Feed System	A602	CS	1	\$31,400	\$31,400	2.58	\$81,012
M-606	Biogas Handling System	A602	SS	1	\$20,739	\$20,739	1.68	\$34,842
M-612	Filter Aid Addition System	A603	CS	1	\$3,000	\$3,000	1.2	\$3,600
P-602	Anerobic Digestor Feed Pump	A602	CS	2	\$11,400	\$22,800	2.8	\$63,840
P-606	Aerobic Digestor Feed Pump	A602	CS	2	\$10,700	\$21,400	2.8	\$59,920
P-608	Aerobic Sludge Recycle Pump	A603	SS316	1	\$11,100	\$11,100	2.8	\$31,080
P-610	Aerobic Sludge Pump	A603	SS316	1	\$11,100	\$11,100	2.8	\$31,080
P-611	Aerobic Digestion Outlet Pump	A603	CS	2	\$10,700	\$21,400	2.8	\$59,920
P-614	Sludge Filtrate Recycle Pump	A603	CS	2	\$6,100	\$12,200	2.8	\$34,160
P-616	Treated Water Pump	A603	CS	2	\$10,600	\$21,200	2.8	\$59,360
P-630	Recycle Water Pump	A601	CS	2	\$10,600	\$21,200	2.8	\$59,360
S-600	Bar Screen	A602	CS	1	\$111,541	\$111,541	1.2	\$133,849
S-601	Beer Columns Bottoms Centrifuge	A601	SS316	3	\$659,550	\$1,978,650	1.2	\$2,374,380
S-614	Aerobic Sludge Belt Filter Press	A603	?	1	\$650,223	\$650,223	1.8	\$1,170,401
T-602	Equalization Basin	A602	Concrete	1	\$350,800	\$350,800	1.42	\$498,136
T-606	Anerobic Digestor	A602	Lined or ss	4	\$881,081	\$3,524,324	1.04	\$3,665,297
T-608	Aerobic Digestor	A603	Lined Pit	1	\$635,173	\$635,173	1	\$635,173
T-610	Clarifier	A603	Concrete	1	\$174,385	\$174,385	1.96	\$341,795
T-630	Recycle Water Tank	A601	CS	1	\$14,515	\$14,515	1.4	\$20,321
						\$8,505,113	1.25	\$10,664,657

Equipment Num :: A-602

Eqipment Name :: Equalization Basin Agitator
Associated PFD :: PFD-P100-A602

Equipment Type :: FIXED-PROP

Equipment Category :: AGITATOR

Equipment Description:: 38 hp each, Fixed Prop, 0.1 hp/1000 gal

Number Required :: 1 Number Spares :: 0

Scaling Stream :: 612

Base Cost :: 28400.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 188129.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor

Install. Factor :: KG/HR :: 1.2000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT

Material of Const :: SS

Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WT602
Utility Type :: POWER
Date Modified :: 12/21/98
Notes :: Expected Power Req: 28 kW.

Eq. No. A-602

Eq. Name Equalization Basin Agitator

Associated PFD A602

Stream for Design 612 Stream Description Tank Inlet

Flow Rate 188129 Kg/hr R9809G Average Density 0.945 g/CC R9809G

Flowrate 876 gpm 52578 gph

Calculated Tank Vol. 377516 gal See T-602 Hp Specification 0.1 hp/1000 gal Assumption

Hp Requirement 38 hp/1000 gal

Scaling Stream 612
Scaling Rate 188129
Scaling Units Kg/hr

A-602

AG - 100 A-602

COMPONENT DATA SHEET

FIXED PROP

CODE OF ACCOUNT: 134

COMPONENT DESIGN DATA:

MATERIAL SS

DRIVER SPEED 1800.00 RPM
DRIVER POWER 38.00 HP
TOTAL WEIGHT 2600 LBS

COST DATA:

ESTIMATED PURCHASE COST USD 28400.

							L/M	
	:1	MATERIAL	:***	M A N P	O W E R	***:	RATIO	:
	:	USD	:	USD	MANHOUF	RS :U	ISD/USD	:
EQUIPMENT&SETTING	:	28400.	:	842.	48	:	0.030	:
PIPING	:	0.	:	0.	0	:	0.000	:
CIVIL	:	0.	:	0.	0	:	0.000	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	0.	:	0.	0	:	0.000	:
ELECTRICAL	:	427.	:	697.	35	:	1.631	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	0.	:	0.	0	:	0.000	:
SUBTOTAL	:	28827.	:	1539.	83	:	0.053	:
INSTALLED DIRECT (COST	304	00.	INST'L	COST/PE	RATIC	1.070)

-IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997 Run Date: 17NOV98-12:38:36

Equipment Num :: A-606

Eqipment Name :: Anaerobic Agitator
Associated PFD :: PFD-P100-A602

Equipment Type :: FIXED-PROP

Equipment Category :: AGITATOR

Equipment Description:: Fixed Prop, 41 hp, 0.05 hp/1000 gal

Number Required :: 4 :: 0 Number Spares

Scaling Stream :: ANEROVOL
Base Cost :: 30300.00 Cost Basis :: ICARUS
Cost Year :: 1997
Base for Scaling :: 810250.000
Base Type :: SIZE

Base Type Base Units :: GAL Install. Factor :: 1.2000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT

:: ASPEN FORT BLCK

Material of CC.

Utility Calc. :: ASFER.

:: WT606

:: POWER :: POWER Utility Type Date Modified :: 12/21/98

Notes :: Expected Power Req: 123 kW. SS ESSENTIALLY THE

SAME COST AS CS. SCALING TO ASPEN CALIBRATES

ANEROBIC DIGESTOR VOLUME

Eq. No. A-606

Eq. Name Anerobic Digestor Agitator

Associated PFD A602

Design Basis 810250 gal T-606 Individual Volume

Assumption, based on the fact that there are very little

Design Basis 0.05 hp/1000 gal solids to suspend.

Size 41 hp

Cost Estimate

Cost ICARUS '97 \$ 30,300 SS Use because of minor cost differential

\$ 29,100 CS

Scaling Stream ANEROVOL Total volume required per vessel, calculated by ASPEN

Scaling Rate 810250 Scaling Units gal

Integer Number of Vessels calculated by ASPEN, based

Integer Number Required INUMANER on max volume of 950,000 gal per vessel

A-606 AG - 100 A-606

COMPONENT DATA SHEET

FIXED PROP

CODE OF ACCOUNT: 134

COMPONENT DESIGN DATA:

MATERIAL SS

MATERIAL 55
DRIVER SPEED 1800.00 RPM
DRIVER POWER 41.00 HP
TOTAL WEIGHT 2800 LBS

COST DATA:

ESTIMATED PURCHASE COST USD 30300.

							L/M	
	:	MATERIAL-	:***	M A N P	O W E R	***:	RATIO	:
	:	USD	:	USD	MANHOUF	RS :U	SD/USD	:
EQUIPMENT&SETTING	:	30300.	:	859.	49	:	0.028	:
PIPING	:	0.	:	0.	0	:	0.000	:
CIVIL	:	0.	:	0.	0	:	0.000	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	0.	:	0.	0	:	0.000	:
ELECTRICAL	:	427.	:	697.	35	:	1.631	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	0.	:	0.	0	:	0.000	:
SUBTOTAL	:	30727.	:	1556.	84	:	0.051	:
INSTALLED DIRECT (COST	3230	00.	INST'L	COST/PE	RATIO	1.066	5 ====

IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 16NOV98-11:31:04

Equipment Num :: A-608

Eqipment Name :: Aerobic Lagoon Agitators

Associated PFD :: PFD-P100-A603

Equipment Type :: SURFACE-AERATOR

Equipment Category :: AGITATOR

Equipment Description:: TWISTER SURFACE AERATOR 50 HP EA

Equipment Description:: TWISTER S

Number Required :: 16

Number Spares :: 0

Scaling Stream :: AEROBCHP

Base Cost :: 31250.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 812.000

Base Type :: SIZE

Base Units :: HP

Install Factor :: 1 4000 Base Units :: HP Install. Factor :: 1.4000 Install. Factor Basis:: MERRICK98 Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WT608
Utility Type :: POWER
Date Modified :: 12/21/98
Notes :: Expected Power F

Notes :: Expected Power Req.: 605 kW.

Eq. No.	A-608
Eq. No.	A-60

Eq. Name Aerobic Digestor Aerator

Associated PFD A603

Calculated COD 438 Kg/hr Calculated below from R9809G

Caclulated BOD 307 Kg/hr BOD is 70% of COD, V. Putsche, as reported by J. Rucco

BOD daily 16,204 lb/day

O2 Requirement 32,408 lb/day 2 lb O2 per lb BOD (Goble Sampson) hp Requirement 812 hp Calculation per Goble Sampson

Cost Estimate

Goble Sampson \$500,000 16 aerators 50 hp each

Scaling Stream AEROBCHP
Scaling Rate 812
Scaling Units HP

	Kg/hr	COD Kg/hr	Per R9809G
Mass Flow KG/HR			
Glucose	0.00	0	
Xylose	0.00	1.55434E-08	
Unknown	0.00	0	
Colsids	0.00	0	
Ethanol	3.25	6.78210016	
Arabinose	0.00	0	
Galactose	0.00	0	
Mannose	0.00	0	
Glucose Oligomers	0.00	0	
Cellibiose	0.00	0	
Xylose Oligomers	0.00	0	
Mannose Oligomers	0.00	0	
Galactose Oligomers	0.00	0	
Arabinose Oligomers	0.00	0	
Xylitol	0.00	0	
Furfural	54.04	90.2384834	
HMF	18.21	27.6783336	
Methane	2.49	9.95074	
Lactic Acid	0.05	0.056598506	
Acetic Acid	21.11	22.5878391	
Glycerol	0.00	0.000692483	
Succinic Acid	0.00	5.35041E-05	
Denaturant	0.00	0	
Oil	0.00	6.91765E-06	
Acetate Oligomers	0.00	0	
NH4Acet	245.95	281.1238218	
	345.093	438.4186695	Kg/hr of COD

Kg COD/Kg

Glucose 1.07 Per Merrick WWT Report 11/98

Xylose	1.07
Unknown	1.07
Colsids	0.71
Ethanol	2.09
Arabinose	1.07
Galactose	1.07
Mannose	1.07
Glucose Oligomers	1.07
Cellibiose	1.07
Xylose Oligomers	1.07
Mannose Oligomers	1.07
Gaactose Oligomers	1.07
Arabinose Oligomers	1.07
Xylitol	1.22
Furfural	1.67
HMF	1.52
Methane	4
Lactic Acid	1.07
Acetic Acid	1.07
Glycerol	1.22
Succinic Acid	0.95
Denaturant	3.52
Oil	2.89
Acetate Oligomers	1.07
NH4Acet	1.143

RIF SAMPSON ASSOCIAT

					1 11000	454111
309 East 10th Orive	COLORADO 1076 S Alton Way Building F	OMONTANA 1520 Third St NW # C-107	O NEW MEXICO 4004 Carlisle Blvd NE Suite J	OREGON 19210 SW Martinazzi Ave Suize 122	UTAH 3500 S Main St Suite 200	□ WASHINGTO! 1420 NW Gilman R Suite 2161
(602) 969-3867	Englewood, CO 8D112 303) 770-6418 303) 770-6424 FAX	Great Falls, MT 59404 (406) 965-2536 (406) 965-2520 FAX	Albuquerque, NM 87107 (505) 381-8718 (505) 881-9055 FAX	Tudlatin, OR 97082 503) 692-4172 (503) 692-1669 FAX	Salt Lake City, UT 84115 (801) 258-8790 (801) 268-8792 FAX	1552902h, WA 9807 (425) 392-0491 (425) 392-9615 FA
LETTER O	F TRANSM	IITTAL	Dat	e 11/20/98	Your#	
			Atte		Volles	y. The second
WE ARE SENDI O Shop drawin Copy of lette Copies D	ngs	llowing items: O Submittals O Purchase ord		O Under separa Plans Specification Description		Manuais
1		Aeler	rix P.	Poposal		
THESE ARE TR. For your use O As requested O For approval O For review as	i	o checked below: O Approved a O Approved a O Returned for our signature.	or corrections	O Resubmit O Submit O Return O Other	O copies f	or approval for distribution and prints
PEMARKS	D					

SIGNED

A FAX TRANSMITTAL FROM:

AEROMIX Systems, Inc.

2611 N. Second Street, Minneapolis, MN 55411
Phone: 612/521-8519 • Toll free: 800/879-3677 • fax: 612/521-1455
Visit us on the internet at www.AEROMX.com

TO:	FROM:
Steve Hansen	Todd Jacobs, Sales Engineer
COMPANY:	DATU:
Goble Sampson Associates	November 20, 1998
FAX NUMBER:	TOTAL NO. OF PAGES INCLUDING COVER
303/770-6424	3
PHONICNUMBER	SENDER'S PHONE NUMBER:
303/770-6418	612 / 521-8519
HEGARDING:	SENDER'S PAX NUMBER:
NREI.	612 / 521-1455
CIRCENT POR REVIEW P	Luasu comment

Stove

Per the attached calculations, they need about 800 horsepower to meet the oxygen demand using the TWISTER Slow Speed Surface Acrator. This is the most efficient mechanical aerator made in terms of oxygen transfer. I recommend installing 16 each 50 hp TWISTER Acrators in the first cell. A complete mix should be maintained along with a minimum of two parts per million residual oxygen level. Please not that this sizing is based upon BOD, not the list of contaminants you sent me.

Budget price for 16 cach 50 hp IWISTER float mounted slow speed accustors is \$500,000.

Call with questions.

Sincerely,

Todd Jacobs

The information contained in this faceinite is intended for use only by the person addressed above and shall not be used by any other purty for any reason. Any party reviewing this fax is obligated to keep any and all information confidential which is listed as confidential.

1003 UC/L

AERATOR SIZING CALCULATIONS FOR:

National Renewable Energy Lab

Date:

11/20/98

Design Criteria

To convert from mg/l to lbs/day use the following equation: $mg/l \times 8.34 lb / 1,000,000 \times Daily flow (MGD)$

Flow:

1.17 Million Gallons per Day

BOD demand:

1660 mg/l converts to:

16198 lbs/day

Total Sus Solids:

200 mg/l converts to:

1952 lbs/day

TKN:

0 mg/l converts to:

0 lbs/day

The pond volume is found using the following equation:

V = 13/3 (As + Ab + squareroot(As * Ab))

Where:

As = surface area

D = water depth

Ab = bottom area

V=cell volume in cuft.

Detention time is found by dividing volume by daily flow.

	Cell 1		Cell 2		<u>Ce)13</u>	
Width:	300.00	ft.	150.00	ſŧ.		ft.
Length:	600,00	ft.	300.00	ft.		ft.
Depth:	15.00	ft.	12.00	ft.		ſt.
Volume:	2129726	cu.st.	418856	cu.ft.	0	cu.ft.
Capacity:	15930352	Gal	3133043	Gal		Gal
Det, lime:	13.62	Days	2.68	Days	0.00	Days

Oxygen required for BOD removal

17 or this application we are using:

2.00 lbs of O2 for each pound of BOD per

day (under working conditions). A residual oxygen level of

2.00 mg/l should

be maintained in the pond at all times.

ROD Oxygen requirement calculation.

16198 lbs of BOD/day x

2.00 16 of O2/16 BOD =

32396 lb 02/day

TKN Oxygen requirement calculation:

0 lbs of TKN/day x

4.60 lb of O2/lb TKN =

0 lb 02/day

Total Oxygen required per day is the total of the BOD and TKN demands.

32396 lbs/day +

Page 1 of 2 0 lbs/day =

32396 lbs O2 (under field conditions

殴り14

AERATOR SIZING CALCULATIONS FOR:

National Renewable Energy Lab

Oxygen transfer rates for aerators are reported under standard conditions. In order to make proper comparisons under field conditions, Total Oxygen Requirement (TOR) should be converted to Standard Condition Total Oxygen Requirement (STOR). Conversion from field conditions can be accomplished with the following equation:

At Std. conditions the TWISTER transfers up to 3 lbs O2/Hp-hr. For this system we are using a transfer rate of 2.70 lb O2/Hp-IIr.

Oxygen IIp = 52595.12 lbs-day/ 64.80 lbs/IIp-day = 811.65 Hp

TWISTER™

Low Speed Surface Aerator

Highest Oxygen Transfer.

The proven TWISTERTM Low Speed Surface Actator provides unmatched oxygen transfer rates, quality, and long lesting performance. These solidly built acrators use a partially submerged rotating turbine to effectively stir the basin while creating intense air-to-water mixing, resulting in high oxygen transfer. TWISTERTM Acrotors feature:

- * Strongly built gearbox with a safety factor of two or more
- * Super resistant FRP rotor, uniquely shaped to maximize performance
- * Fixed or float mounting

Typical TIVISTERIM Low Speed Aerator on Sools

Lypical Twister Low Speed Acraior fixed mounted

Reduced Maintenance.

All shafts, couplings, gearbox's and support apparatus are oversized to reduce wear, vibration, and long term maintenance. The rotor is specially shaped and has proven to throw off debris and prevent fee build-up. It includes an adjustable bass plate for level proper adjustment.

Extensive Applications.

TWISTERTM Low Speed Surface Aerators add oxygen and mixing in a wide range of applications, including:

- * Wastewator Treatment
- * Leachato Treatment
- * Supplemental Agration
- * Sequencing Batch Reactors

Approximate Weight (kgs)	180	2 90	240	280	500	760	1000	1400	1500	1600	1600	1800	2700	2000	4000
Approximate Weight (poungs)	396	440	<i>5</i> 28	G18 ;	1100	1650	2200	3030	- 5500	3520	3020	8060	5940	6300	8500
Oxygon Transler - SAE motor				2.710 3.2	Pounde p	eriior sopu	MOUR PROUP 1	-7 to 1.6 kg	gs per lan/	hour (ell po	er ASCE)				
Minimum Liquid Level (IVmIrs)	4.9/1.5	4.971.5	4,9/1,5	494.5	6.91.B	5.9/1.8	5.9/1.8	8.14.2	7.904	7.224	7.524	7 <i>9</i> 24	728.0	7.92.4	7.92,1
Spray Diameter (leat/maters)	12/38	1238	1442	1642	154.5	18/5.4	1854	186.4	2248	22/0.6	22¢ 8	22/6.6	250.5	200,5	RUBS
Max Liquid Level Variation (Inform)	2.1/5	3 1 ,E	3.1/2	2.1/9	3.910	ane.c	5,9/10	9.520	2910	2910	0.210	39/10	7,9/20	7.9/20	7.920
Oxygen Dispersion Zone (f/mire)	90/90	11836	147469	16450	18456	213/88	220/97	239/70	343480	293/89	802/92	SEAVIDE	370/113	·(03/125	מביטוא
Complete Mix Dia. (N/ml/rs)	39/10	43 /13	48/15	S9/18.	6820	76/29	79734	8628	63/28	70201	10863	178/96	19120	164/64	TETIME
Min. Basin Dia. (leeVmelers)	165	165	297	23/7	309	34/10.5	94/10.5	39/12	39/12	32/15	49/15	49/13	2005	62/21	7924
Agiar rpm (60 or 50 Hz power)	79	97	170	189/90	70	75	77 ·	ø	70	70	70	******	≺בייסיקקב>	naloly 70>	>>>>>
		<u> </u>		<u> </u>	1		L	<u> </u>	<u></u>		L	l	ل ــــــــــــــــــــــــــــــــــــ	L	ا ا
Output	2.2	4	5.5	7.5	10	15	18.5	22	30	37	45	55	75	90	110
Power	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150

Notes:

All numbers are approximate.

Actual performance may vary.

All data subject to change.

Rotation speeds may vary 3 to 5 rpm depending on installation.

Aeration Knowledge. Wide Range Of Products.

ABROMIX is your aeration expert. We offer all major wastewater aeration technologies and the expertise to help you select and apply the equipment best suited for your application. Let our technical experts assist you in proper sixing, layout, and operation of your aeration system.

AEROMIX Systems. Inc. 2611 No. Second Street Minneapolis, MN 55411 U.S.A.

Ph: 800/879-3677, 612/521-8519
Fax: 612/521-1455
e-mail: aeromix@aeromix.com
web site: www.aeromix.com

Rental units available.
© 1998, AEROMIX Systems, Inc.

Equipment Num :: A-630

Eqipment Name :: Recycled Water Tank Agitator
Associated PFD :: PFD-P100-A601

Equipment Type :: FIXED-PROP

Equipment Category :: AGITATOR Equipment Description:: 5 hp, 50 rpm,

Equipment Description:: 5 hp, 50 rp

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 602

Base Cost :: 5963.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 179446.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1,3000

Base Units :: KG/HR Install. Factor :: 1.3000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WT630
Utility Type :: POWER
Date Modified :: 12/10/98
Notes :: Expected Power Req: 4 kW.

Eq. No. A-630

Eq. Name Recycle Water Tank Agitator

Associated PFD A601

Stream for Design 602 Stream Description Primary Inlet

Flow Rate 179446 Kg/hr R9809G Average Density 0.999 g/CC R9809G

Flowrate 790.7 gpm

T-630 Calc. Tank 15813 gal

Vendor Quote \$ 5,442

5 hp

13218 gal Tank Volume for Agitator Quote

0.92 hp/1000 gaBack Calculated

Scaling Exponent 0.51

Cost Estimate \$ 5,963 1998

Scaling Stream 602
Scaling Rate 179446
Scaling Units Kg/hr

es es es estado en e	· *
A-630 Water +22	ag.tator
12' \$ x 13 raci	+ en «
1.370 insol, sol	
4.990 Sal. Sai.	35
9190 H20	
To Suspend solids	
20,00	
: :	
1	
i	
	JIMSSIAN
	J: WASSIAN 8-26-18
	<u> </u>

SVEDALA PROPOSAL

SVEDALA Proposal No. 810306 Rev 0	DATE PROCESSED: August 26, 1998 by Jim Puliafico
Project: Merrick WWT Agitator	Terms: Per Svedala Standard Terms & Conditions

Svedala Pumps & Process Open-Agitator custom designed for use with a vertical cylindrical tank, 15 Ft diameter by 12 Ft straight-side high, with an open top and flat bottom. The mixer is designed to produce moderate agitation to suspend solids. The material agitated is a dilute slurry having a specific gravity of 1.03 and a viscosity of 3 cP. The slurry is made up of 3.5% by weight solids with a dry solids specific gravity of 2.8. The particle size distribution used is: d99=45, d80=15 and d50=8 microns.

The agitator is to be mounted on 15 inches high beams, mounted on tank centerline with full baffles. A square mounting plate is included to facilitate mounting of the agitator to the beams. The tank, baffles and agitator support structure are supplied by the customer.

The agitator consists of the following components:

- One propeller per shaft, 60 inch diameter, 4-blade MIL high efficiency propeller, bolted blade design, constructed of carbon steel. The prop will operate at a rotational speed of 50 rpm, resulting in a tip speed of 785 fpm. Prop is located31 in from tank floor to prop centerline.
- A 2.5 inch Schedule 80 pipe shaft constructed of carbon steel. A rigid coupling half is welded to the shaft for attachment to the reducer coupling half. For prop attachment, a hub plate is welded to the shaft. Shaft is approximately 126 inches long.
- Speed reducer, cycloidal gear, totally enclosed running in grease, Sumitomo Model No. CVVJS-4155-Y-35, ratio 35:1, with output shaft coupling half, C-Face mount motor adapter input and motor coupling.
- 5 HP motor, 1750 Rpm, 230/460V/3ph/60Hz, high efficiency, corrosive duty 184TC frame with drip cover.

Estimated weight each 520 Lbs

Unit Price:

\$5,442.00 FOB Colorado Springs, CO

CUSTOMER		
30020121	Customer: Merrick	PC#: 810306-1 Item#: 001
	Agitator Tag Number	
PROCESS		· · · · · · · · · · · · · · · · · · ·
	Service Description	
	Temperature & Pressure	: 100 <deqf> & Atmospheric Pressure ></deqf>
	Final Mixture Viscosity	: 100 <degf> & Atmospheric Pressure > : 2.8 <cp 5s^-1="" @=""></cp></degf>
	Sp. Gr. of Mixture	: 1.028 <g cm3=""></g>
	Sp. Gr. of Liquid	: 1.000 (1 cP) <g cm3=""></g>
	Sp. Gr. of Dry Solids	: 2.800 (1 C1) (3/Cm3)
	Sp. Gr. of Mixture Sp. Gr. of Liquid Sp. Gr. of Dry Solids Weight & Solids	: 3.5 <%w/w>
	Solids Settling Vel d99	: 0.50 Free 0.22 Hindered <fpm></fpm>
	Particle Size Distributo	188 AM 188 A
TANK		: d99=45 d80=15 d50=7.5 <um></um>
	Tank Diameter v Height	: 180 Diameter x 144 Str.Side <inxin></inxin>
	Top / Bottom Geometry	· Flat / Flat
	Volume Agitated	: 13220 to 13220
	Liquid Level Range	120 to 120
	Baffle Recommendation	: 4 6 90 Dec 15 Wide x 112 5 Jane 3
	Tank Operation	: Flat / Flat
AGITATOR		. Continuous flow w Bottom Draw-Oli >
7041111011	Agitator Model (Oty=1)	: Cictor Agitatas hu Cuadala Indiana
_	Agitator Shaft Seal	: Custom Agitator by Svedala Industries > : No Shaft Seal is Used >
-	Mounting Type and Height	: On 15 in Beams with 1 in Bed-Plate >
	No of Impallare	· One (1) Single Temples
	Impellar Style Head	: One (1) Single Impeller <-> : MIL <-> : 4 Bolted Blades <->
	Number of Places	· Milli
	Impeller Diameter	. 4 Bolted Blades <->
	Impeller Diameter D/T Ratio	: 60
	D/T Ratio Operating Speed Power Used By Turbines Tip Speed	: 0.333
	Power Used By Turbines	: 50 <rpm></rpm>
	Tin Speed	: 1.7 < HP >
	Annular Valority Vyn	: 785
	Other Agitation Scales	: 1 F6 F27/22 2 F4 F27/6 106 F 27/
	Total Impollor Dumning	: 1.30 ft2/S2 3.34 fpm/6 106 Turns/hr >
	Agitator Punction	. 23360 <gpm></gpm>
SHAFT	Agitator Function	: Solid Suspension >
JIME I		: 1.875 Dia.x 3.8 Long from Mtg.Ref. <in></in>
	Pine Shaft (Lover)	: 2.875/2.323D.(2.5 Sch80) x 126 Long <in></in>
	Total Length / Counting	129 7 Matel / Personal
	Turbine Dist to Mtg.Ref.	: 128.7 Total / Removable/Pipe <in ?=""></in>
	Turbine Off-Bottom Dist.	34
	Weight of Impeller	174
	Gear Box Shaft Stress	
	Hydraulic Safety Factor	2 22
DRIVE		: 3.00 <->
	Speed Reduction	· Sunitana Curlaidal Com a C Tomas Value
	Reducer Model	: Sumitomo Cycloidal Gear w C-Face Motor > : CVVJS-4155-Y-35 Standard > : 35.000: 1 Single Reduction < R:1 > : 1.52 <hp hp=""></hp>
	Gear Drive Ratio	· 25 000 1 Ciamba Dadashian A A
	Gearbox Service Factor	· 1 52
	Low Speed Bearing Life	: Upper= 78900 Lower= 599200 <b10 h=""></b10>
MATERIALS		. obbar 10300 rowar 233700 <810 U/U>
	Impeller Matl/Cover	· C/S / No Cover
	Upper Shaft Material	: C/S / No Cover > 1440 High Strength Steel >
	Lower Shaft Matl/Cover	: 4140 High Strength Steel > : C/S / No Cover >
LOADS		
	DESIGN LOADS: (*)=APPROP	RIATE SERVICE FACTOR APPLIED ALREADY
	Bending Moment (* 1.85F)	: 7455 Cin-Lbf>
	Torque Moment (* 2.0SF)	1200
	Downward Load (* 2.0SF)	: 1040
	First Critical Speed	: 1040
WEIGHTS		. 103.5 (0.46 RACIO) <
· 	Weight of Agitator Drive	4.0.4
	Weight of Motor	
	Weight of Wet-End	
	Total Weight of Agitator	. 500
MOTOR		
	Motor Power / Rpm	: 5 / 1750 (230/460V/3/60Hz) <hp rpm=""></hp>
	· • • · · ·	- , - · - · · · · · · · · · · · · · · ·
	Total Power Used	: 2.13 (43 % of Nameplate) < HD >

DESIGN LOADS:

BENDING MOMENT: 7490 in-Lbf TORQUE REACTION: 12610 in-Lbf Lbf VNWARD LOAD: 990

RPM CAL SPEED: 113 Autre Loads Include An Appropriate Safety Factor DRAWN TO SCALE

NOTE:

Dimensions in inches (in)
 Motor: 5 HP at 1750 Rpm, Frame 184TC
 V-Belt Drive: No Belts Are Used
 Gear Reducer: Sumitomo CVVJS-4155-Y-35 Standard, Ratio 35:1, Gear S.F.=1.52, Cycloidal Gear, Grease Lubricated.
 Seal: No Shaft Seal is Used
 Shaft: One (1) Piece Extension Shaft 125.5 in Long, made rom 2-1/2 " Schedule 80 pipe. Jurbines: (1) \$60 in Diameter MIL Propeller with 4 Bolt-on Blades.

4 Boit-on Blades.

8. Process Slurry: 1.028 SpGr Mixture with 3.5%w/w Solids, 1.000 Liquid SpGr, 2.800 Solids SpGr, Maximum Particle Size 45 microns. No gas is added.

a Wested Barter Carbon Steel

Svedala Pumps & Process Industries Agitators

LOCATION DRAWING Merrick, Denver CO WWT Holding Tank

į	MOTOR DATA
	Rpm
	Frame
	Electricity
(/WIIIIIIIIIII M	
V WIIIFINIIIIII	SPEED REDUCER DATA
* 	Mfgr
	Model
	Ratio
	Service Factor
	DIMENSIONS
H	М Н
	ØD
	Ť
	U
T d Q D	N
a v v v	ØB
T T	ØQ
	øR
'	W
	X
øR	ØY
1	DRIVE WEIGHT:

SM—Cyclo Mount: N Hales on a ØB Bolt Circle ØQ Holes

Optional Bed Plate.

Svedala Pumps & Process Industries Agitators

SM-Cyclo Agitator Drive Motor Direct Connected Beam Mounted

Rev.: Date:

Dwg. No.:

SM-Cyclo 4000 Series Features:

The smaller Svedala/Denver agitators often utilize the Sumitomo Cyclo speed reducer with the motor either directly connected or through a low ratio belt drive. A belt drive input to the reducer permits low cost speed flexibility should the process conditions change. The reducer service factor is based on the motor nameplate power rather than transmitted power. All SM-Cyclo speed used for agitator service are grease filled to guard against catastrophic lubrication oil loss through the lower bearing seals. The low speed B-10 bearing life are always calculated and are a minimum of 50,000 hours. Spare parts can be obtained directly from Sumitomo or through Svedala.

The SM-Cyclo is manufactured by Sumitomo Machinery who have had over 25 years of experience in building this unique speed reducers. Worldwide service is readily available through a network of regional offices and service technicians.

The SM-Cyclo reducer does not use any gears to achieve speed reduction; rather the design utilizes an eccentric cam, cycloidal discs, ring gear pins with rollers, and a low speed shaft with multiple roller pins. All torque transmitting parts roll with at least 2/3rds of the teeth engaged at any time. This contrasts with worm and bevel gearing which slide and helical and bevel gear teeth which have only a few teeth engaged at any time. As a result, no wear failures have every occurred with the Cyclo drive in over five million installations since 1939. Furthermore, the SM-Cyclo reducer can withstand over 500% shock load, the highest overload capacity of any speed reducer. The SM-Cyclo can quietly achieve 87:1 reduction in a single stage and still maintain 95% efficiency because all components roll. The transmission components are produced using 52100 high-carbon chromium bearing steel through-hardened and tempered to Rockwell C57 to C63. Using no gears, AGMA guidelines are meaningless.

Housings are manufactured from high-quality cast iron, built to withstand severe external loads. Grease filled reducers are specified by Svedala/Denver to ensure a long trouble-free life. Low speed shafts are manufactured from high alloy high strength steel (4140). Low speed shafts use either ball bearings of spherical roller bearings. Svedala/Denver works closely with the Sumitomo manufacturing to ensure the bearing life exceeds our minimum of 50,000 hours 8-10 life with special attention given to the low speed bearings. In certain models, high capacity bearings are readily substituted for the standard bearings often resulting in a 8-10 bearing life exceeded 100,000 hours.

Equipment Num :: C-601

Eqipment Name :: Lignin Wet Cake Screw

Associated PFD :: PFD-P100-A601

Equipment Type :: SCREW

Equipment Category :: CONVEYOR

Equipment Description:: 14" DIA X 100' LONG

Equipment Description:: 14" DIA X

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 601

Base Cost :: 31700.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 99199.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1 4000 Base Units :: KG/HR Install. Factor :: 1.4000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7800

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WC601
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: 85 hp (63 kW) sr

Scale Factor Basis :: GARRETT

Notes :: 85 hp (63 kW) specified by Icarus. Eq. No. C-601

Eq. Name Lignin Wet Cake Screw

Associated PFD A601

Stream for Design 601 Stream Description Conveyor Inlet

Flow Rate 99199 Kg/hr R9809G

Average Density 0.99
Frac Solids 0.303
Density 61.8 lb/ft^3

Flowrate 3532.7 cfh Full Flow to Burner

Flow (tons/h) 109.1

Design Basis 14 in. dia Perry 5th, P. 7-7, Table 7-5, Max RPM, 45% Full

4000 cfh rated capacity

100 ft. length Assume its fairly close to the boiler

1/3 from Individual Separators 1178 cfh per individual separator

9 in. dia Perry 5th, P. 7-7, Table 7-5, Max RPM, 45% Full

1200 cfh rated capacity

15 ft. length Assume its fairly close to the boiler

Cost Estimation

1 Icarus 1997 \$ 21,900 14" x 100' 1 unit \$ 9,800 9" x 15' 2 units

\$ 31,700 Total

Scaling Stream 601
Scaling Rate 99199
Scaling Units Kg/hr

C-601 CO - 100 C-601

COMPONENT DATA SHEET

SCREW

CODE OF ACCOUNT: 211

COMPONENT DESIGN DATA:

NT DESIGN CS
MATERIAL CS
168.00 TPH LENGTH 100.00 FEET DIAMETER 14.00 INCHE DIAMETER 14.00 INCHES PROD DENSITY 50.00 PCF DRIVER POWER 75.00 HP TOTAL WEIGHT 8500 LBS

COST DATA:

ESTIMATED PURCHASE COST USD 21900.

							L/M	
	:	MATERIAL	:***	M A N P	OWER	***:]	RATIO	:
	:	USD	:	USD	MANHOUR	S :U	SD/USD	:
EQUIPMENT&SETTING	:	21900.	:	466.	25	:	0.021	:
PIPING	:	1354.	:	1314.	71	:	0.970	:
CIVIL	:	1976.	:	7142.	455	:	3.615	:
STRUCTURAL STEEL	:	988.	:	285.	17	:	0.288	:
INSTRUMENTATION	:	493.	:	0.	0	:	0.000	:
ELECTRICAL	:	506.	:	745.	38	:	1.472	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	183.	:	416.	31	:	2.276	:
SUBTOTAL	:	27400.	:	10368.	637	:	0.378	:
INSTALLED DIRECT (COST	378	00.	INST'L	COST/PE	RATIO	1.726	5

IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 16NOV98-11:37:45

C-601short

CO - 100 C-601short

COMPONENT DATA SHEET

SCREW

CODE OF ACCOUNT: 211

COMPONENT DESIGN DATA:

MATERIAL A285C RATE 69.00 TPH 15.00 FEET LENGTH DIAMETER 9.00 INCHES PROD DENSITY 50.00 PCF DRIVER POWER 5.00 HP TOTAL WEIGHT 1100 LBS

COST DATA:

ESTIMATED PURCHASE COST USD 4900.

							L/M	
	:1	MATERIAL	:***	M A N P	OWER	***: I	RATIO	:
	:	USD	:	USD	MANHOUF	RS :US	SD/USD	:
EQUIPMENT&SETTING	:	4900.	:	466.	25	:	0.095	:
PIPING	:	897.	:	1058.	57	:	1.180	:
CIVIL	:	359.	:	1300.	83	:	3.619	:
STRUCTURAL STEEL	:	180.	:	52.	3	:	0.288	:
INSTRUMENTATION	:	493.	:	0.	0	:	0.000	:
ELECTRICAL	:	393.	:	668.	34	:	1.699	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	90.	:	180.	13	:	1.995	:
SUBTOTAL	:	7312.	:	3724.	215	:	0.509	:
INSTALLED DIRECT (COST	110	00.	INST'L	COST/PE	RATIO	2.245	5 ====

IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 17NOV98-14:10:54

Equipment Num :: C-614

Eqipment Name :: Aerobic Sludge Screw

Associated PFD :: PFD-P100-A603

Equipment Type :: SCREW

Equipment Category :: CONVEYOR

Equipment Description:: 9" DIA X 25' LONG

Equipment Description:: 9" DIA 3

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 623

Base Cost :: 5700.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 978.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1,4000 Base Units :: KG/HR Install. Factor :: 1.4000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7800 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WC614
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: 7.5 hp (6 kW) sr

Notes :: 7.5 hp (6 kW) specified by Icarus. Eq. No. C-614

Eq. Name Aerobic Sludge Screw

Associated PFD A603

Stream for Design 623
Stream Description Conveyor Inlet

Flow Rate 978 Kg/hr R9809G

Average Density 1.12
Frac Solids 0.252
Density 69.9

Density 69.9 lb/ft^3
Flowrate 30.8 cfh
Flow (tons/h) 1.1

Design Basis 9 in. dia Perry 5th, P. 7-7, Table 7-5, Max RPM, 30% Full

280 cfh rated capacity

25 ft. length Assume dumping into C601

Cost Estimation

Icarus 1997 Attached

Scaling Stream 623
Scaling Rate 978
Scaling Units Kg/hr

CO - 100 C-614 C-614

COMPONENT DATA SHEET

SCREW

CODE OF ACCOUNT: 211

COMPONENT DESIGN DATA:

MATERIAL CS RATE 69.00 TPH 25.00 FEET LENGTH DIAMETER 9.00 INCHES PROD DENSITY 50.00 PCF DRIVER POWER 7.50 HP TOTAL WEIGHT 1700 LBS

COST DATA:

ESTIMATED PURCHASE COST USD 5700.

:MATERIAL:*** M	ANPOWER	***: RATIO :
: USD : US	D MANHOUR	S :USD/USD :
EQUIPMENT&SETTING : 5700. :	466. 25	: 0.082 :
PIPING : 897. : 1	058. 57	: 1.180 :
CIVIL : 539. : 1	950. 124	: 3.618 :
STRUCTURAL STEEL : 269. :	78. 5	: 0.288 :
INSTRUMENTATION : 493. :	0. 0	: 0.000 :
ELECTRICAL : 393. :	668. 34	: 1.699 :
INSULATION : 0. :	0. 0	: 0.000 :
PAINT : 98. :	203. 15	: 2.080 :
SUBTOTAL : 8389. : 4	422. 260	: 0.527 :
INSTALLED DIRECT COST 12800. I	NST'L COST/PE	RATIO 2.246

-IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 16NOV98-11:37:45

Equipment Num :: H-602

Eqipment Name :: Anaerobic Digestor Feed Cooler

Associated PFD :: PFD-P100-A602

Equipment Type :: SHELL-TUBE

Equipment Category :: HEATX

Equipment Description:: TEMA BES TYPE, FLOATING HEAD

Equipment Description:: TEMA BES To Number Required :: 1

Number Spares :: 0

Scaling Stream :: AREA0602

Base Cost :: 128600.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 7627.000

Base Type :: SIZE

Base Units :: SQF

Install Factor Basis: DELTA-T99 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7400 Scale Factor Basis :: VENDOR Material of Const :: SS316 CS

Utility Calc. :: ASPEN UOS BLOCK
Utility Stream :: QH602
Utility Type :: COOLING-WATER
Date Modified :: 01/13/99

Eq. No. H-602

Eq. Name Anerobic Digestor Feed Cooler

Associated PFD A602

Stream for Design	QH602	7.3 MMKcal/h	r
	QH602	28.9 MMBtu/hr	Delta-T used 14.0 MMBtu/hr
Inlet	612	75 C	R9809G
Outlet	613	35 C	R9809G
Cooling Water Inlet	1046	28 C	
Cooling Water Outlet	1047	37 C	
LMTD		18.3 C	
LMTD		33.0 F	
U		115 BTU/(h*sf*	Merrick
Area total		7627 sf	

Area total 7627 sf

Cost Estimation

LDR Quote 1 2,228 sf \$62,799 Merrick LDR Quote 9/1/98 LDR Quote 2 3,862 sf \$94,544 Merrick LDR Quote 9/1/98

Calc Scaling Exp 0.74

Scaled Cost Total \$ 156,835 1998 SS 316

ICARUS- 1997	\$ 128,600	7,627 SQF	SS316 Tubes/CS Shell - Selected for Estimation
	\$ 153,200	7,627 SQF	SS316 Tubes/SS316 Shell - For Reference
	\$ 72,500	2,228 SQF	SS316 Tubes/SS316 Shell - For Reference to above
	\$ 217,500		3 @ 2228 sqft required - For Reference to above
	\$ 106,100	3,862 SQF	SS316 Tubes/SS316 Shell - For Reference to above
	\$ 212,200		2 @ 3862 sqft required - For Reference to above
Scaling Stream	AREA602		
Scaling Rate	7627.0		
Scaling Units	SQF		

Eq. Design2.xls 1/13/99

H-602 HE - 100 H-602

EQUIPMENT ITEM DESIGN DATA SHEET

FLOAT-HEAD

NO.	ITEM		SPECIFIED USER	VALUE USED BY SYSTEM	UNITS
GENERA	L DESIGN DATA				
1.	TEMA TYPE			BES	
2.	SURFACE AREA		7627.0	7627.0	SF
3.	NUMBER OF SHELLS		1	1	
4.	NUMBER OF TUBE PASSES			2	
	NUMBER OF SHELL PASSES	S		1	
6.	VENDOR GRADE			HIGH	
SHELL	DATA				
7.	SHELL MATERIAL SYMBOL		A 515	A 515	
8.	SHELL DIAMETER			44.00	INCHES
9.	SHELL LENGTH				FEET
	SHELL PRESSURE			150.0	
	SHELL TEMPERATURE			650.0	
	CORROSION ALLOWANCE			0.1250	
	SHELL THICKNESS			0.4375 300	INCHES
	ASA RATING NUMBER OF BAFFLES			22	
	SHELL FABRICATION TYPE			PLATE	
	EXPANSION JOINT	Ľ.		NO	
Ι/.	EXPANSION COINT			NO	
TUBE D					
	TUBE MATERIAL SYMBOL		316LW	316LW	
	NUMBER OF TUBES			972	
	TUBE DIAMETER (OD)			1.000	
	TUBE LENGTH TUBE PRESSURE			30.00	
	TUBE TEMPERATURE			150.0 650.0	
	TUBE CORROSION ALLOWAI	NCF		0.0000	
	TUBE WALL THICKNESS	NCE		0.0490	
	TUBE GAGE			18	
	PITCH TYPE			TRIANGULAR	
	TUBE PITCH			1.250	INCHES
29.	TUBE SEAL TYPE			SEALW	
TUBE S	HEET DATA				
	TUBE SHEET MATERIAL			316L	
	TUBE SHEET THICKNESS			2.750	INCHES
	CORROSION ALLOWANCE			0.0000	INCHES
33.	CHANNEL MATERIAL SYMBO	JL		316L	
DI OADI	NG HEAD DATA				
	HEAD MATERIAL SYMBOL			316L	
	FLOATING HEAD THICKNES	SS		0.3750	INCHES
	SIDE HEAD DATA			3 515	
	HEAD MATERIAL SYMBOL			A 515	
	ASA RATING HEAD THICKNESS			300	INCHES
38.	HEAD THICKNESS			0.43/5	INCHES
HEAD D					
	HEAD MATERIAL SYMBOL			316L	
	ASA RATING			300	T1101
41.	HEAD THICKNESS			0.3750	INCHES
WEIGHT	DATA				
42.	SHELL			6900	LBS
	TUBES			14800	LBS
	HEADS			1300	LBS
	INTERNALS/BAFFLES			3000	LBS
46.	NOZZLES			870	LBS

47.	FLANGES	4300	LBS
48.	BASE RING + LUGS	60	LBS
49.	TUBE SHEET	1500	LBS
50.	SADDLES	340	LBS
51.	FITTINGS, ETC.	2600	LBS
52.	TOTAL WEIGHT	35700	LBS
VENDOR	COST DATA		
53.	MATERIAL COMPONENT COST	77073	USD
54.	SHOP MANPOWER COST	15882	USD
55.	SHOP OVERHEAD	15861	USD
56.	GENERAL OFFICE OVERHEAD	9598	USD
57.	PROFIT	10186	USD
58.	TOTAL COST	128600	USD
59.	RESULTING UNIT COST	3.602	USD/LBS
60.	RESULTING UNIT COST	16.86	USD/SF

L/M

	:	-MATERIAL-	-:***	MANP	O W E R **	*:	RATIO	:
	:	USD	:	USD	MANHOURS	: [ISD/USD	:
EQUIPMENT&SETTING	:	128600.	:	870.	47	:	0.007	:
PIPING	:	99708.	:	16445.	890	:	0.165	:
CIVIL	:	1062.	:	1442.	92	:	1.358	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	10467.	:	2457.	127	:	0.235	:
ELECTRICAL	:	0.	:	0.	0	:	0.000	:
INSULATION	:	21940.	:	9824.	559	:	0.448	:
PAINT	:	225.	:	457.	33	:	2.031	:
SUBTOTAL	:	262001.	:	31494.	1748	:	0.120	:

INSTALLED DIRECT COST 293500. INST'L COST/PE RATIO 2.282 _____

-IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 13JAN99-13:31:50

H-602 HE - 100 H-602

EQUIPMENT ITEM DESIGN DATA SHEET

FLOAT-HEAD

NO.	ITEM		SPECIFIED USER	VALUE USED BY SYSTEM	UNITS
GENERA	L DESIGN DATA				
1.	TEMA TYPE			BES	
2.	SURFACE AREA		7627.0	7627.0	SF
3.	NUMBER OF SHELLS		1	1	
4.	NUMBER OF TUBE PASSES			2	
5.	NUMBER OF SHELL PASSES	3		1	
6.	VENDOR GRADE			HIGH	
SHELL	DATA				
	SHELL MATERIAL SYMBOL		SS316	SS316	
	SHELL DIAMETER			44.00	INCHES
	SHELL LENGTH			33.00	FEET
	SHELL PRESSURE			150.0	PSIG
11.	SHELL TEMPERATURE			650.0	DEG F
12.	CORROSION ALLOWANCE			0.0000	INCHES
13.	SHELL THICKNESS			0.4375	INCHES
14.	ASA RATING			300	
15.	NUMBER OF BAFFLES			22	
16.	SHELL FABRICATION TYPE	€		PLATE	
17.	EXPANSION JOINT			NO	
miiDE	3 CC 3				
TUBE D.	TUBE MATERIAL SYMBOL		216111	316LW	
			210TM	972	
	NUMBER OF TUBES TUBE DIAMETER (OD)			1.000	TMOTTEC
	TUBE LENGTH				
	TUBE PRESSURE			30.00 150.0	PSIG
	TUBE TEMPERATURE			650.0	
	TUBE CORROSION ALLOWAY	JCE.		0.0000	
	TUBE WALL THICKNESS	· CL		0.0490	
	TUBE GAGE			18	
	PITCH TYPE			TRIANGULAR	
	TUBE PITCH			1.250	INCHES
	TUBE SEAL TYPE			SEALW	
ייים ביי	HEET DATA				
	TUBE SHEET MATERIAL			316L	
	TUBE SHEET THICKNESS			2.750	TMCUEC
	CORROSION ALLOWANCE			0.0000	
	CHANNEL MATERIAL SYMBO	OT.		316L	INCIIED
33.				3102	
	NG HEAD DATA			21.67	
	HEAD MATERIAL SYMBOL	20		316L	TATOLING
35.	FLOATING HEAD THICKNES	55		0.3750	INCHES
SHELL	SIDE HEAD DATA				
36.	HEAD MATERIAL SYMBOL			SS316	
37.	ASA RATING			300	
38.	HEAD THICKNESS			0.4375	INCHES
HEAD D.	ΔͲ <mark>Ϫ</mark>				
	AIA HEAD MATERIAL SYMBOL			316L	
	ASA RATING			300	
	HEAD THICKNESS				INCHES
WEIGHT				7000	TDC
	SHELL TUBES			14800	LBS
	HEADS			1300	LBS LBS
	INTERNALS/BAFFLES			3000	LBS
	NOZZLES			870	LBS
				- / •	

47.	FLANGES	4400		LBS
48.	BASE RING + LUGS	60		LBS
49.	TUBE SHEET	1500		LBS
50.	SADDLES	340		LBS
51.	FITTINGS, ETC.	2700		LBS
52.	TOTAL WEIGHT	36000		LBS
VENDOR	COST DATA			
53.	MATERIAL COMPONENT COST	94324		USD
54.	SHOP MANPOWER COST	17758		USD
55.	SHOP OVERHEAD	17484		USD
56.	GENERAL OFFICE OVERHEAD	11446		USD
57.	PROFIT	12188		USD
58.	TOTAL COST	153200		USD
59.	RESULTING UNIT COST	4.	256	USD/LBS
60.	RESULTING UNIT COST	20.	.09	USD/SF
			т.	/ M

L/M

	:	:MATERIAL:***		MANP	O W E R **	*:	RATIO	:
	:	USD	:	USD	MANHOURS	: U	SD/USD	:
EQUIPMENT&SETTING	:	153200.	:	870.	47	:	0.006	:
PIPING	:	120746.	:	18691.	1012	:	0.155	:
CIVIL	:	1062.	:	1442.	92	:	1.358	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	10862.	:	2457.	127	:	0.226	:
ELECTRICAL	:	0.	:	0.	0	:	0.000	:
INSULATION	:	21940.	:	9824.	559	:	0.448	:
PAINT	:	0.	:	0.	0	:	0.000	:
SUBTOTAL	:	307809.	:	33284.	1837	:	0.108	:

INSTALLED DIRECT COST 341100. INST'L COST/PE RATIO 2.227 ______

-IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 13JAN99-13:31:50

H-602 HE - 100 H-602

EQUIPMENT ITEM DESIGN DATA SHEET

FLOAT-HEAD

NO.	ITEM			VALUE USED BY SYSTEM	UNITS
1. 2. 3. 4. 5.	L DESIGN DATA TEMA TYPE SURFACE AREA NUMBER OF SHELLS NUMBER OF TUBE PASSES NUMBER OF SHELL PASSES VENDOR GRADE		3862.0	BES 3862.0 1 2 1 HIGH	SF
8. 9. 10. 11. 12. 13. 14. 15.	DATA SHELL MATERIAL SYMBOL SHELL DIAMETER SHELL LENGTH SHELL PRESSURE SHELL TEMPERATURE CORROSION ALLOWANCE SHELL THICKNESS ASA RATING NUMBER OF BAFFLES SHELL FABRICATION TYPE EXPANSION JOINT		SS316	SS316 38.00 23.00 150.0 650.0 0.0000 0.4375 300 18 PLATE NO	FEET PSIG DEG F INCHES
19. 20. 21. 22. 23. 24. 25. 26. 27. 28.	TUBE MATERIAL SYMBOL NUMBER OF TUBES TUBE DIAMETER (OD) TUBE LENGTH TUBE PRESSURE TUBE TEMPERATURE TUBE CORROSION ALLOWAL TUBE WALL THICKNESS TUBE GAGE PITCH TYPE TUBE PITCH TUBE SEAL TYPE			0.0490 18 TRIANGULAR	FEET PSIG DEG F INCHES INCHES
30. 31. 32.	HEET DATA TUBE SHEET MATERIAL TUBE SHEET THICKNESS CORROSION ALLOWANCE CHANNEL MATERIAL SYMBO	OL		316L 2.500 0.0000 316L	INCHES
34.	NG HEAD DATA HEAD MATERIAL SYMBOL FLOATING HEAD THICKNE	SS		316L 0.3125	INCHES
36. 37. 38.	SIDE HEAD DATA HEAD MATERIAL SYMBOL ASA RATING HEAD THICKNESS			SS316 300 0.4375	INCHES
40.	ATA HEAD MATERIAL SYMBOL ASA RATING HEAD THICKNESS			316L 300 0.3125	INCHES

CIVIL STRUCTURAL STEEL INSTRUMENTATION ELECTRICAL INSULATION PAINT	: : :	9374. 0. 17717. 0. 215268.	: : :	0. 7699. 0.	0 438 0	: : :	0.000 0.435 0.000 	:
STRUCTURAL STEEL INSTRUMENTATION ELECTRICAL INSULATION	:	0. 17717.	:	0. 7699.	0 438	: :	0.435	:
STRUCTURAL STEEL INSTRUMENTATION ELECTRICAL	:	0. 17717.	:	0.	0	:	0.435	:
STRUCTURAL STEEL INSTRUMENTATION				0.			0.000	:
STRUCTURAL STEEL	:	23/4.						
		0574	:	2411.	125	:	0.252	:
CIVIL	:	0.		0.			0.000	
	:			1321.	84	:		
PIPING		80938.	:	14457.	782		0.179	
QUIPMENT&SETTING	3 :	106100.	:	752	41	:	0.007	:
		USD						
	:	-MATERIAL	:***	MANP	OWER		L/M RATIO	:
60. RESULTING	UNIT	COST				27.47	USD/	/ 5
59. RESULTING							USD/	
58. TOTAL COST						USD		
57. PROFIT						USD		
56. GENERAL OF	FICE		85	06	USD			
55. SHOP OVERH			140		USD			
54. SHOP MANPO						59		
JENDOR COST DATA 53. MATERIAL (NENT COST			601	20	USD	
52. TOTAL WEIG					217		LBS	
51. FITTINGS,	ETC.				18	00	LBS	
50. SADDLES	-				270 L			
49. TUBE SHEET		0.0				00	LBS	
48. BASE RING	+ T.II	GS				36	LBS	
47. FLANGES						00	LBS	
45. INTERNALS / 46. NOZZLES	DAFF	пео				90	LBS	
	/Dan.	T EC				30 00	LBS LBS	
$\Delta \Delta = H \times \Delta H \times $						00	LBS	
43. TUBES 44. HEADS						00	LBS	

WEIGHT DATA

-IPE Version: 4.0 Estimate Base: 1st Quarter 1997 (4.0) June 30, 1997 Run Date: 16NOV98-11:45:13

H-602 HE - 100 H-602

EQUIPMENT ITEM DESIGN DATA SHEET

FLOAT-HEAD

NO.	ITEM			VALUE USED BY SYSTEM	UNITS
1. 2. 3. 4.	L DESIGN DATA TEMA TYPE SURFACE AREA NUMBER OF SHELLS NUMBER OF TUBE PASSES NUMBER OF SHELL PASSES VENDOR GRADE		2228.0	BES 2228.0 1 2 1 HIGH	SF
8. 9. 10. 11. 12. 13. 14. 15.	DATA SHELL MATERIAL SYMBOL SHELL DIAMETER SHELL LENGTH SHELL PRESSURE SHELL TEMPERATURE CORROSION ALLOWANCE SHELL THICKNESS ASA RATING NUMBER OF BAFFLES SHELL FABRICATION TYPE EXPANSION JOINT		SS316	SS316 30.00 23.00 150.0 650.0 0.0000 0.4375 300 18 PLATE NO	FEET PSIG DEG F INCHES
19. 20. 21. 22. 23. 24. 25. 26. 27.	TUBE MATERIAL SYMBOL NUMBER OF TUBES TUBE DIAMETER (OD) TUBE LENGTH TUBE PRESSURE TUBE TEMPERATURE TUBE CORROSION ALLOWAI TUBE WALL THICKNESS TUBE GAGE PITCH TYPE TUBE PITCH TUBE SEAL TYPE		316LW	316LW 426 1.000 20.00 150.0 650.0 0.0000 0.0490 18 TRIANGULAR 1.250 SEALW	FEET PSIG DEG F INCHES INCHES
30. 31. 32. 33.	SHEET DATA TUBE SHEET MATERIAL TUBE SHEET THICKNESS CORROSION ALLOWANCE CHANNEL MATERIAL SYMBO TING HEAD DATA HEAD MATERIAL SYMBOL	DL		316L 1.875 0.0000 316L	
	FLOATING HEAD THICKNES	SS			INCHES
36. 37.	SIDE HEAD DATA HEAD MATERIAL SYMBOL ASA RATING HEAD THICKNESS			SS316 300 0.4375	INCHES
39. 40.	HEAD MATERIAL SYMBOL ASA RATING HEAD THICKNESS			316L 300 0.2500	INCHES

42	DATA								
14.	SHELL					3300		LBS	
43.	TUBES					4300		LBS	
44.	HEADS					560			
45.	INTERNALS	BAFFI	LES			1100		LBS	
46.	NOZZLES					400		LBS	
47.	FLANGES					2200		LBS	
48.	BASE RING	+ LUC	SS			29		LBS	
49.	TUBE SHEET					540		LBS	
50.	SADDLES					180		LBS	
51.	FITTINGS,	ETC.				1300		LBS	
52.	TOTAL WEIG	HT				13900		LBS	
VENDOR	COST DATA								
	MATERIAL C		NENT COST			39141		USD	
	SHOP MANPO							USD	
	SHOP OVERH							USD	
	GENERAL OF					6095		USD	
57.	PROFIT					6670		USD	
	TOTAL COST	,						USD	
	RESULTING							6 USD	/LBS
	RESULTING							USD	
		:	-MATERIAL	:**	MANP	O W E R **	*:]	L/M RATIO	:
		:	USD	:	USD	MANHOURS	: U	SD/USD	:
QUIPME	NT&SETTING	; :	72500.	:	752.	MANHOURS 41	:	0.010	:
PIPING		:	52945.	:	11775.	637	:	0.222	:
						74			
IVIL	JRAL STEEL		0.		0.	0	:	0.000	:
			10723	:	2411.	125	:	0.225	:
STRUCTU	MENTATION	:	10/23.						
STRUCTU	MENTATION CAL	:	0.	:	0.	0	:	0.000	•
STRUCTU INSTRUM ELECTRI	MENTATION CCAL CION				2411. 0. 6666.				
STRUCTU INSTRUM ELECTRI INSULAT	CION	:	14357.	:	6666.	379 0	:	0.464	:
INSTRUM ELECTRI INSULAT PAINT	CION	: :	14357. 0.	: : 	6666. 0.	379 0	:	0.464	: :

IPE Version: 4.0
Estimate Base: 1st Quarter 1997 (4.0)
June 30, 1997
Run Date: 16NOV98-11:45:13

LDR CORP.

100 S. ADAMS RD SAND SPRINGS OK. 74063

TELE: 918-241-0174 FAX: 918-241-0175

TO: MERRICK ENGINEERS

P.O. BOX 22026 DENVER, CO 80222 ATTN: CHRISTY SCHMID

QUOTE #	98-642
DATE	9/1/ 98
INQUIRY DATE	8/26/98
INQUIRY #	19013104
* EST DELIVERY	12 WEEKS
** TERMS	PROGRESS PAYMENTS
F.O.B	SAND SPRINGS, OK
SHIPPED V.I.A.	TRUCK
SALESMAN	G. LAWHORN/FRY

QTY	DESCRIPTION	PRICE EACH	AMOUNT
	MATERIAL, LABOR AND ENGINEERING TO FABRICATE:		24.
	"BUDGET PRICES ONLY"		
ONE	27 X 288 TEMA TYPE B E S HEAT EXCHANGER		
OIL	PER ATTACHED LDR SPECIFICATION SHEET.		
	TAG: ITEM NO. H-602		
	ESTIMATED WEIGHT: 11,700 LBS.	=	
	ALL MATERIAL: 316 STAINLESS STEEL		
	473 TUBES: 0.75" O.D. X .065(AVG) BWG X 24' LG; SA-249-TP316		
	STAINI ESS STEEL		
	PRICE:		63 70 0 0
	ridel.		62,799.0
(35 X 288 TEMA TYPE B E S HEAT EXCHANGER		
	PER ATTACHED LDR SPECIFICATION SHEET.		
	TAG: ITEM NO. H-602 ALT.		
	ESTIMATED WEIGHT: 18,400 LBS.		
	ALL MATERIAL: 316 STAINLESS STEEL		
	820 TUBES: 0.75" O.D. X .065(AVG) BWG X 24' LG; SA-249-TP316		
	STAINLESS STEEL		
	PRICE:		94,544.00
ONE	26 X 288 TEMA TYPE B E S HEAT EXCHANGER		
	PER ATTACHED LDR SPECIFICATION SHEET.		
	TAG: ITEM NO. H-606		
	ESTIMATED WEIGHT: 10,700 LBS.		
	ALL MATERIAL: 316 STAINLESS STEEL		
	418 TUBES: 0.75" O.D. X .065(AVG) BWG X 24' LG; SA-249-TP316		
	STAINLESS STEEL		
	PRICE:		57,969.00
	** PROGRESS PAYMENTS REQUIRED:		37,303.00
	10% UPON DRAWING APPROVAL SUBMITTAL		
1	30% UPON RECEIPT OF MATERIALS LESS TUBES		
ĺ	20% UPON RECEIPT OF TUBES		
	BALANCE UPON COMPLETION		
	* DELIVERY AS QUOTED IS AFTER RECEIPT OF APPROVAL DRAWINGS.		
Į	PRICES ARE BASED ON USING FCAW WELDING.		
\smile $ $	\sim		
			<u> </u>

BY:

GENERAL FABRICATION AND PERFORMANCE INFORMATION SECTION 3

FIGURE G-5.2 HEAT EXCHANGER SPECIFICATION SHEET

1	11===	1.10		Job No.							
2	Customer MERZ	1CAC			Reference No.						
3	Address					Proposal No.					
4	Plant Location					Date	Rev.				
5	Service of Unit ANARIZ	0816	DIGEST	OR FEED	مم	CHem No.	1-602				
6	Size 27-288 T		(Hor/Vent)	BES		Connected in	Perallel +Gories				
7			Ft: Shells/Uni		Surf	/Shell (Gross/Eff.)					
			RFORMANCE	OF ONE UNIT			2/8/ Sq FI				
9	Fluid Allocation	,		Shell Side		Tubo	Side				
10	Fluid Name		DIGES		= 71	/ /.	7-77-				
11	Fiuld Quantity, Total	Lb/Hr		110 8 11	=	1/62 332	14/12				
12	Vapor (In/Out)		160	110 3 115	-	1164 354	7//5				
13	Liquid		11010	-1		1440 22. 14					
14	Steam		160/10	//	<u></u>	1/62.3328/1	μ				
15	Water				 l						
ı											
16	Nencondensable		2010								
17	Temperature (In/Out)	*F	248	//		\$2.4	98.6				
18	Specific Gravity		12000	ے در سے سے		2.7	37				
19	Viscosity, Liquid	Ср									
20	Molecular Weight, Vapor]						
21	Melecular Weight, Noncondensab	le									
22	Specific Heat	Btu/Lb *F									
23	Thermal Conductivity Btu Ft/I	Hr Sq Ft * F									
24	Latent Heat St	u/Lb@ F									
25 [Inlet Pressure	Psig		· · · · · · · · · · · · · · · · · · ·							
26	Velocity	Ft/S	· · · · · · · · · · · · · · · · · · ·								
27	Pressure Drop, Allow./Calc.	Psi	5	/ 5			7				
28	Fouling Resistance (Min.)		002			002					
29	Heat Exchanged 18830 00	20 × /		u/Hr: MTD (Correc	nead\	91					
30		115.45		ean	rtea!		• F				
31			ONE SHELL	240	—т		Btu/Hr Sa Ft * F				
32	CONSTRU					Sketch (Bundle/No	zzie Orientation)				
33	Design/Test Pressure Psig	Shell S	100	Tube Side							
34		<u> </u>		1501			1				
- 1	Design Temperature *F	300		300							
35	No. Passes per Shell	/		1 7							
36	Corresion Allowance In-										
37	Connections In	<u> </u>		<u> </u>							
38	Size & Out	6	<u>-</u>	16							
39	Rating Intermediate,										
40		L:Thk (Min/A	lve) / 6 In	1.: Length 241	ft: Pitch	/ SØ In. ← 30	☆ 60 ← 90 ← 45				
41	Tube Type 3/655	·		Materiai '							
42	Shell 3/655 ID 7	7 00	ln,	Shell Cover		655	(Integ.) (Remov.)				
43	Channel or Bonnet 3/655			Channel Cover	3/	655	4				
44	Tubesheet-Stationary 3/65			Tubesheet-Float	ing Z	1689					
45		5		Impingement P							
46			E/211	% Cut (Diam/A		Specing: c/c	iniet in-				
47 [Baffles-Long			Seal Type							
48 [Supports-Tube		U-Bend			Туре					
49	Bypess Seal Arrangement		· · · · · · · · · · · · · · · · · · ·	Tube-Tubesheet	Joint						
50	Expansion Joint 3/69	<u>'c</u>			llow	5 016 /4	ctino Glano.				
51	pri-Inlet Nozzle	_	Bundle Entranc			Bundle Exit					
52	Gaskets-Shell Side			Tube Side	• • • •	CAIL					
53	-Floating Head			1004 3164							
54	Code Requirements					TEMA CIC					
55	Weight/Shell		Ellis de las co			TEMA Class					
56	Remarks		Filled with Y	1978 V		Bundle	<u> </u>				
57	er wierel in D										
· ·											
58											
59											
60				~							
61 (

						DATE 8/25/98 SH	EET 1 OF 1	
□●□ N∕IFF	RRICK	HEAT EXCHANGER				DATA SHEET #		
							KID.	
£n	gineers & Architects					BY CPS CHI	\U	
CLIENT						REVISION DAT	E BY	
POJECT			_			REVISION DAT	E BY	
CATION	10010101		•					
CONTRACT # / TASK	19013104		-					
						L		
SIZE:	,		TYPE:			SURFACE ARE	A·	FT ⁴
EQUIPMENT NO./DESC	RIPTION / H-602, A	NAEROBIC D	IGESTOR F	EED COOLER		DRAWING NO.		
LOCATION:						21.11.11.10.110.		
		CONDITIO	NS OF S	RVICE (ON	F LINIT)			
HEAT EXCHANGED	4.745 MM KCALI/HR					RATE: SERVICE	CLEAN	
· · · · · · · · · · · · · · · · · · ·				LL SIDE	THORIGINE!		CLEAN UBE SIDE	
FLUID CIRCULATED				ER FEED			LING WATER	
TOTAL FLUID ENTERING			72,626		KG/HR	527,2		G/HR
		11	V	OU		1N	OUT	
VAPOR	KG/HR (MWT))	0	<u> </u>			
LIQUID	KG/HR	72.6	626	72,6	26			
STEAM	KG/HR			<u> </u>				
WATER .	KG/HR					527,222	527,22	12
NONCONDENSABLES	KG/HR (MWT)						327,22	
			i					
LIQUID GRAVITY @ TEMP				0.96	66			
VISCOSITY: LIQUID, CP								
HEAT: LATENT, BTU/LB; S								
THERM COND:BTU/(HR)(S								
TEMPERATURE	°C	12	20	55	j	28	37	
OPERATING PRESSURE	ATM	2.0	03	2.03		4.14	4.14	
TLOCITY								
PASSES PRESSURE DROP			· · · · · · · · · · · · · · · · · · ·					
FOULING RESISTANCE (M		ALLOW.	···	CALC.		ALLOW.	CALC.	
TOOLING RESISTANCE (IV	ma.)	<u> </u>						
			CONCTE	HOTION				
PRESSURE. ATM		DESIGN	CONSTR					
DESIGN TEMPERATURE,		DESIGN		TEST		DESIGN	TEST	
		MIN AVG.						
	PITCH	WIII AVG.	IN			IELL SIDE	TUBE SIDE	
SHELL DIAM IN. II		MAX. BUNDLE D		INLET	NO. SIZE 1 10"	RATING & FACING	NO. SIZE RATING 8	FACING
TRANS BAFFLE		OUT		OUTLET	1 10"		1 16"	
LONG BAFFLE	INPINGMENT BAFFL	YES		VENT			1 16"	
MATERIALS: (MARK SR & .				DRAIN				
ITEM	MATERIAL SPECIF		XR & SR	TEMP CONN				
TUBES	316 SS			PRESS CONN	! !			
SHELL	316 SS	···			1			
SHELL COVER(REM)(INTEG)								
CHANNEL	316 SS		i	SLIP-ON NOZ	L ZLE FLANG	ES ALLOWED	- YES	- NO
CHAN. COVER(REM)(INTEG)				SLIP-ON ENG			YES	NO
FLOATING-HEAT COVER				CORROSION		SHELL SIDE	IN. TUBE SIDE	IN.
TUBE SHEETS			İ	GASKETS:	SHELL	1		114.
BAFFLES & SUPPORT PLATES		***			CHANNEL			
BOLTING: SHELL COVER						HEAD COVER		
CHANNEL & COVER			i	TEST RINGS			GASKETS	
FLOATING HEAD				STACKING		Joi Ait C		HIGH
				WEIR HEIGHT	•	VOLUME BEHIND V	VEIR	7.11011
MA CLASS:	CODE REQUIREMENT	TS AND SPE	CS:					
WEIGHTS PER SHELL	SHIPPING	LB.	FULL OF W	ATER	LB.	BUNDLE		LB.

GENERAL FABRICATION AND PERFORMANCE INFORMATION SECTION 3

FIGURE G-5.2 HEAT EXCHANGER SPECIFICATION SHEET

2 Customer MF RRICK			Job No.		
Autorence No.					
Address Proposal No.					
Plant Location Date Rev.					
Service of Unit # 104 ANABICO.	BIG DIGESTO	OR FEED (00	Fy Item No.	-602	44,
6 Size 35-288 Type	(Hor/ Vest)	BES	Connected In	Parallel	Series
	a Ft: Sheils/Unit	/ Sun	//Shell (Gass/Eff.)	3781	Sq Ft
EP	ERFORMANCE OF	ONE UNIT			34,11
9 Fluid Allocation	Shel	l Side	Tub	e Side	
0 Fluid Name	DIGEST	R FEED	c·w		
I Fluid Quantity, Total Lb/Hr				428 X /1	
2 Yaper (In/Out)	288 205/15		P175.	46XX 111	4
3 Liquid		1/20111	77607363		
4 Steam		1001114111	2793228)	16.7	
5 Water	 				
6 Noncondensable					
7 Temperature (In/Out) • F	248/27	/ 7 7 7			
8 Specific Gravity	210(D.P.)	131		`\	
				_	
		ļ <u></u>	-		
Molecular Weight, Yapor	18.	ļ			
Molecular Weight, Noncondensable	ļ				
2 Specific Heat Btu/Lb *F					
Thermal Conductivity Btu Ft/Hr Sq Ft * F					
Latent Heat Btu/Lb@ *F	946				
5 Inlet Pressure Psig					
6 Velocity Ft/S					
7 Pressure Drop, Allow./Calc. Psi	5	1 5	5	17	
Fouling Resistance (Min.)	00	12	06	25-	
Heat Exchanged 4547000 x /115		r: MTD (Corrected)	110.2	WTD	• F
	6-9 Clean			Ptu/Ur S	- 50 . 5
O Transfer Rate, Service / 2	Clean Clean			Btu/Hr S	
CONSTRUCTION OF	ONE SHELL	Tuha Sida	Sketch (Bundle/N		
Transfer Rate, Service / 2 CONSTRUCTION OF Shell :	ONE SHELL	Tube Side			
Transfer Rate, Service CONSTRUCTION OF Shell : Design/Test Pressure Psig /	ONE SHELL	501			
Transfer Rate, Service CONSTRUCTION OF Shell Design/Test Pressure Psig // Design Temperature 'F 300	ONE SHELL				
Transfer Rate, Service CONSTRUCTION OF Shell S Design/Test Pressure Psig // Design Temperature 'F 300 No. Passes per Shell	ONE SHELL	50 1 300 1 X			
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 200 No. Passes per Shell Corrosion Allewance In.	ONE SHELL	50 1 300 1 X			
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 200 No. Passes per Shell Corrosion Allewance In. Connections In /0	ONE SHELL	501 300 1 X 0 24			
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature °F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4. Out	ONE SHELL	50 1 300 1 X			
CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature *F 300 No. Passes per Shell / Corrosion Allewance In. Connections In /0 Size & Out & C Rating Intermediate/	ONE SHELL Side	501 300 1 X 0 24 24	Sketch (Bundle/N	ozzie Orientat	ion)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature *F 300 No. Passes per Shell / Corrosion Allewance in. / / Connections in / / / Size & Out / / Rating intermediate/ Tube No. 200 OO // In.;Thk (Min/)	ONE SHELL Side	50 / 300 1 X 0 24 24 ingth 24 Ft: Pitch	Sketch (Bundle/N		ion)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/) Tube Type 3/655 Bale	ONE SHELL Side Avg) / 6 In.; Le	50 / 300 1 ** 2	Sketch (Bundle/N	ozzie Oriental ozzie Oriental	len)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature *F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 200 OO // In.;Thk (Min/) Tube Type 3/655 Sale Shell 3/655 2 ID ord	Avg) / 6 In.; Le	SO / 300 / # 24 24 Ingth 24 Ft: Pitch aterial hell Cover	Sketch (Bundle/N	ozzie Orientat	len)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature °F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 00 // In.;Thk (Min/, Tube Type 3/65 361) Channel or Bonnet 3/65	Avg) / 6 In.; Le	SO / 300 / # 24 24 Ingth 24 Ft: Pitch aterial hell Cover	Sketch (Bundle/N 1	ozzie Oriental ozzie Oriental	len)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size & Out C Rating Intermediate/ Tube No. 20 00 // In.;Thk (Min/, Tube Type 3/65C Shell 3/65C // ID -000 Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C	Avec / 6 In.; Le M In. St	SO / 300 / X 24 24 ength 24 Ft; Pitch aterial heli Cover hannel Cover ubesheet-Floating	Sketch (Bundle/N	ozzie Oriental ozzie Oriental	len)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature °F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 00 // In.;Thk (Min// Tube Type 3/65 Shell 3/65 // ID 00 Channel or Bonnet 3/65 Tubesheet-Stationary 3/65 Floating Head Cover 3/655	Ave) / In.; Le	SO / 300 / X 24 24 Ingth 24 Ft: Pitch aterial hell Cover 5 hannel Cover 3	Sketch (Bundle/N	ozzie Orientat) 소 60 ← 90 (Integ.) (I	len)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/) Tube Type 3/65 ID ord Channel or Bonnet 3/655 Tubesheet-Stationary 3/655 Floating Head Cover \$1655 Baffles-Cross 3/655 Type 5/6	Avg) / In.; Le M In. St	SO / 300 / X 24 24 ength 24 Ft; Pitch aterial heli Cover hannel Cover ubesheet-Floating	Sketch (Bundle/N 1/ SS in. ← 30 1/6 SS 1/6 SS	ozzie Orientat) 소 60 ← 90 (Integ.) (I	len)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature °F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 00 // In.;Thk (Min/, Tube Type 3/65	Avg) / Sin.; Le M In. Si CI Ti In Si M V	SO / 300 / X 24 24 ength 24 Ft; Pitch aterial heli Cover hannel Cover subesheet-Floating npingement Protection	Sketch (Bundle/N	ozzie Orientat) 소 60 등 90 (Integ.) (I	(on) (← 45 (Remov.)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/, Tube Type 3/65C Shell 3/65C // ID -00 Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C Baffles-Cross 3/65C Type 5/6 Baffles-Cross 3/65C Type 5/6 Baffles-Long Supports-Tube	Avg) / Sin.; Le M In. Si CI Ti In Si M V	24 24 24 angth 24 Ft; Pitch aterial heli Cover subasheet-Floating inpingement Protection, Cut (Diam/Area)	Sketch (Bundle/N	ozzie Orientat) 소 60 등 90 (Integ.) (I	(on) (← 45 (Remov.)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature *F 300 No. Passes per Shell / Corrosion Allewance In. / / Size 4 Out / Canactions In / / / Rating Intermediate/ Tube No. 20 OD // In.;Thk (Min/) Tube Type 3/65C 300 Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C Type 5/6 Baffles-Cross 3/65C Type 5/6 Baffles-Cross 3/65C Type 5/6 Baffles-Cross Seal Arrangement	Avg) / In.; Le M In. St CI Tr In St U-Rend	24 24 24 angth 24 Ft; Pitch aterial heli Cover subasheet-Floating inpingement Protection, Cut (Diam/Area)	Sketch (Bundle/N In. 4-30 Il. 55 Il. 55 In. 55 Spacing/c/c Type	ozzie Orientat) 소 60 등 90 (Integ.) (I	→ 45 emov.)
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature *F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/, Tube Type 3/65C Shell 3/65C // ID -00 Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C Baffles-Cross 3/65C Type 5/6 Baffles-Cross 3/65C Type 5/6 Baffles-Long Supports-Tube	Avg) / O In.; Le M In. St CI In U-Bend	SD / ZD / ZD / ZD / 24 24 angth 24 Ft; Pitch aterial hell Cover famous Cover gubesheet-Floating inpingement Protection, Cut (Diam/Area) eal Type	Sketch (Bundle/N In. 4-30 Il. 55 Il. 55 In. 55 Spacing/c/c Type	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n.
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature *F 300 No. Passes per Shell / Corrosion Allewance In. / / Size 4 Out / Canactions In / / / Rating Intermediate/ Tube No. 20 OD // In.;Thk (Min/) Tube Type 3/65C 300 Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C Type 5/6 Baffles-Cross 3/65C Type 5/6 Baffles-Cross 3/65C Type 5/6 Baffles-Cross Seal Arrangement	Avg) / O In.; Le M In. St CI In U-Bend	SD / ZD ZY 24 24 angth ZY Ft; Pitch aterial hell Cover hannel Cover subesheet-Floating mpingement Protection Cut (Diam/Area) eal Type ube-Tubesheet Joint	Sketch (Bundle/N In. 4-30 Il. 55 Il. 55 In. 55 Spacing/c/c Type	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n.
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 00 // In.;Thk (Min// Tube Type 3/65	Avg) / In.; Le M In. St CI Tr In Sc U-Bend Tu Ty Sundle Entrance	SD / ZD ZY 24 24 angth ZY Ft; Pitch aterial hell Cover hannel Cover subesheet-Floating mpingement Protection Cut (Diam/Area) eal Type ube-Tubesheet Joint	Sketch (Bundle/N Sketch (Bundle/N II. 430 II. 430 II. 450 II. 450 Spacing/c/c Type	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n.
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 00 // In.;Thk (Min/, Tube Type 3/65	Avg) / In.; Le M In. St CI Tr In Sc U-Bend Tu Ty Sundle Entrance	200 24 24 24 angth 24 Ft; Pitch aterial hell Cover substant Protection, Cut (Diam/Area) and Type when Tubesheet Joint (Pex Sell Of Sell O	Sketch (Bundle/N Sketch (Bundle/N II. 430 II. 430 II. 450 II. 450 Spacing/c/c Type	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n.
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 00 // In.;Thk (Min// Tube Type 3/65	Avg) / In.; Le M In. St CI Tr In Sc U-Bend Tu Ty Sundle Entrance	200 24 24 24 angth 24 Ft; Pitch aterial hell Cover substant Protection, Cut (Diam/Area) and Type when Tubesheet Joint (Pex Sell Of Sell O	Sketch (Bundle/N	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n.
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/, Tube Type 3/65 Shell 3//65 // ID 00 Channel or Bonnet 3/65 Tubesheet-Stationary 3//65 Floating Head Cover 3/65 Baffles-Cross 3/655 Type 3/6 Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint 3/65 Ayf-Inlet Nozzia Gaskets-Shell Side Floating Head	Avg) / In.; Le Avg) / In.; Le M In. St CI Tr In So U-Bend Tr Bundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N Sketch (Bundle/N II. \$5 II	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/, Tube Type 3/65 Shell 3//65 // ID 00 Channel or Bonnet 3/65 Tubesheet-Stationary 3//65 Floating Head Cover 3/65 Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint 3/65 Joy'-Inlet Nozzia Gaskets-Shell Side Floating Head Code Requirements	Avg) / In.; Le M In. St CI Tr In Sc U-Bend Tu Ty Sundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n.
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/, Tube Type 3/65 Shell 3/655 / ID ord Channel or Bonnet 3/655 Tubesheet-Stationary 3/655 Floating Head Cover 3/655 Baffles-Cross //655 Type 3/6 Baffles-	Avg) / In.; Le Avg) / In.; Le M In. St CI Tr In So U-Bend Tr Bundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N Sketch (Bundle/N II. \$5 II	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig // Design Temperature F 300 No. Passes per Shell Corrosion Allewance In. Connections In /0 Size 4 Out C Rating Intermediate/ Tube No. 30 OD // In.;Thk (Min/, Tube Type 3/65 Shell 3//65 // ID 00 Channel or Bonnet 3/65 Tubesheet-Stationary 3//65 Floating Head Cover 3/65 Baffles-Cross 3/65 Type 3/6 Baffles-Long Supports-Tube Bypass Seal Arrangement Expansion Joint 3/65 Joy'-Inlet Nozzia Gaskets-Shell Side Floating Head Code Requirements Weight/Shell	Avg) / In.; Le Avg) / In.; Le M In. St CI Tr In So U-Bend Tr Bundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N Sketch (Bundle/N II. \$5 II	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature F 300 No. Passes per Shell / Corrosion Allewance In. D Connections In / / Size 4 Out C Rating Intermediate/ Tube No. DO OD // In.;Thk (Min/, Tube Type 2/65C Shell 3/65C / ID - ord Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C Baffles-Cross J/65C Type 5/6 Ba	Avg) / In.; Le Avg) / In.; Le M In. St CI Tr In So U-Bend Tr Bundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N Sketch (Bundle/N II. \$5 II	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature 'F 300 No. Passes per Shell / Corrosion Allewance In. / / Connections In / / / Size 4 Out / / Rating Intermediate/ Tube No. 20 OD // In.;Thk (Min/, Tube Type 3/65C Shell 3/65C / ID - ord Channel or Bonnet 3/65C Tubesheet-Stationary 3/65C Floating Head Cover 3/65C Baffles-Cross 3/65C Type 3/6 Baffles-Cross 3/65C Type	Avg) / In.; Le Avg) / In.; Le M In. St CI Tr In So U-Bend Tr Bundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N Sketch (Bundle/N II. \$5 II	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n
Transfer Rate, Service CONSTRUCTION OF Shell: Design/Test Pressure Psig / / Design Temperature 'F 300 No. Passes per Shell / Corrosion Allewance In. / / Size & Out	Avg) / In.; Le Avg) / In.; Le M In. St CI Tr In So U-Bend Tr Bundle Entrance	200 24 24 24 24 angth 24 Ft; Pitch aterial hell Cover subsheet-Floating mpingement Protection Cut (Diam/Area) eal Type abe-Tubesheet Joint (Pex AP) 0 for the Side	Sketch (Bundle/N Sketch (Bundle/N II. \$5 II	ozzie Orientat) 소 60 등 90 (Integ.) (I	(n

Equipment Num :: M-604

Eqipment Name :: Nutrient Feed System

Associated PFD :: PFD-P100-A602

Equipment Type :: PACKAGE

Equipment Category :: MISCELLANEOUS Equipment Description:: 5 TANKS AND PUMPS

Number Required :: 1
Number Spares :: 0
Base Cost :: 31400.00
Cost Basis :: VENDOR
Cost Year :: 1998 Install. Factor :: 2.5800 Install. Factor Basis:: VENDOR

:: ASPEN FORT BLCK

:: Expected Power Req: 8 kW. Small system that

doesn't require scaling for other cases.

Eq. No.	M-604

Eq. Name Nutrient Feed System

Associated PFD A602

Stream for Design N/A No Scaling Power Requirement 10 hp Estimated

Cost Estimation	Purchase	Installation		
			Phoenix Bio-Systems, Inc.	Merrick Appendix F
Macro Nutrient Tank	8500	3500	"Case 2",	
Feed Pump	1500	3800		
Micro Nutrient Tank	4500	3500		
Nutrient Pump	1500	3800		
Caustic Pump	1150	3700		
Caustic Tank	9500	17500		
Iron Tank	550	500		
Iron Metering Pump	850	1550		
Phosphate Tank	2500	2500		
Phosphate pump	850	1550		

Phoenix Bio-Systems, Inc. Merrick Appendix F

Nutrient System \$31,400 \$41,900 "Case 2",

Prorated Additional Piping

Trofated Additional Fight		Phoenix Bio-Systems, Inc. Merrick Appendix F
Total Cost of Option	\$6,013,805	"Case 2",
Overhead Portion	\$1,130,000	Design Engineering Fee + Site Preparation
Project Cost Less Overhead	\$4,883,805	
Overall Piping & Installation	\$518,100	Controls+Temp Control+Piping
Overall Piping & Inst %	10.61%	
Installation Cost Above	\$41,900	Per above, extra piping and inst. Prorated
Additional Prorated Installatio	\$7,776	
Total Installation Cost	\$49,676	

Installation Factor 2.58

CLIENT: PHONE/FAX:

1,

NREL

PROJECT NUMBER:

DATE:

5/18/98

TYPE: LOAD RATE:

Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 6510 mg/l & 520 mg/l

,06

COD: FLOW: 1105 gpm

ITEM	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals
Treatability Laboratory Analysis						
Preliminary Design						
						\$0.00
Equalization						
Dimensions			150 000 00	400 000 00	550,000,00	
Capacity (gal)	500,000	1	450,000.00	100,000.00	550,000.00	\$550,000.00
Main Reactor						\$330,000.00
Dimensions	26' d x 60'hAOS aqua St	4				
Capacity (gal)	950.000	1	750,000.00	175,000.00	925,000.00	
Distribution Manifold	ICM s/s	16	4.950.00	32,500.00	111,700.00	
Overflow collection system	PVC	4	15,500.00	22,000.00	84,000.00	
0	10 x 12 FRP Custom	4	28,000.00	38,700,00	150,700.00	
Separator Sample Cocks 7-606	1" PVC	36	50.00	1,200.00	3,000.00	
Packing	TriPack PP	6370	12.00		,	
Insulation	THE BOX F I	19600		' '\		
mstration		10000	- 069	D 271,900 81	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	\$1,490,540.00
Decarbonator			1,218,64	159,265 pm	', ⁾ / ₆ \$	1649205 135,255
Capacity	5,000 gal	1	22,500.00	27,500.00	50,000.00	10112 (33/23/
Dimensions	8'd x 18			•	0.00	
Distributor	s/s	1	7,590.00	9,800 00	17,390.00	
Packing	TriPack 3.5 PP	700	12.00	1,500.00	9,900.00	
Demister		1	2,500.00	1,000.00	3,500.00	
Gratings	FRP	1	4,500.00	3,000.00	7,500.00	
Fan	4 hp	1	1,250.00	2,200.00	3,450.00	
Drain	•					
			46,740	45,000		\$91,740.00
			40,	- 1 -		•

Page 1

Controls 1 85,000.00 8,500.00 93,500.00 Pressure Ind 18 250.00 750.00 5,250.00 Temp Indicators 18 250.00 750.00 5,250.00 pH Controller 6 2,500.00 2,000.00 17,000.00 Biogas Meter 1 4,300.00 1,250.00 5,550.00 Panel 1 3,800.00 2,250.00 6,050.00 PLC 1 9,500.00 5,500.00 15,000.00 Control computer 1 10,500.00 7,500.00 18,000.00 Software 1 4,000.00 12,000.00 16,000.00	
Pressure Ind Temp Indicators pH Controller Biogas Meter Panel PLC Control computer 18 250 00 750 00 5,250 00 750 00 5,250 00 750 00 5,250 00 750 00	
Temp Indicators 18 250 00 750 00 5,250 00 pH Controller 6 2,500.00 2,000.00 17,000.00 Biogas Meter 1 4,300.00 1,250.00 5,550.00 Panel 1 3,800.00 2,250.00 6,050.00 PLC 1 9,500.00 5,500.00 15,000.00 Control computer 1 10,500.00 7,500.00 18,000.00 1	
PH Controller 6 2,500.00 2,000.00 17,000.00 Biogas Meter 1 4,300.00 1,250.00 5,550.00 Panel 1 3,800.00 2,250.00 6,050.00 PLC 1 9,500.00 5,500.00 15,000.00 Control computer 1 10,500.00 7,500.00 18,000.00 18,	
Biogas Meter 1 4,300.00 1,250.00 5,550.00 Panel 1 3,800.00 2,250.00 6,050.00 PLC 1 9,500.00 5,500.00 15,000.00 Control computer 1 10,500.00 7,500.00 18,000.00	
Panel 1 3,800.00 2,250.00 6,050.00 PLC 1 9,500.00 5,500.00 15,000.00 Control computer 1 10,500.00 7,500.00 18,000.00	
PLC 1 9,500.00 5,500.00 15,000.00 Control computer 1 10,500.00 7,500.00 18,000.00	
Control computer 1 10,500.00 7,500.00 18,000.00	
Control computer 40 000 00 46 000 00	
	\$181,600.00*
Temp Control	\$,0,,000.00
Hot water heater 0 0.00 0.00 0.00	
Heat Exch 2 12,500.00 12,500.00 37,500.00	
TION EXON	\$37,500.00 *
BioGas Scrubber Capacity 800 cf 1 10.800.00 7.800.00 18,600 00	
Capacity Company of Transport of Transport	
Grating	
Media 650 CF 750 7.50 1,550.00 7,175.00	\$32,525.00
Piping 1 125,000.00 97,000.00 222,000.00	
7.40	
Heat trace/insulate 1 32,000.00 45,000.00 77,000.00	\$299,000.00
/Macronutrient Tank	* - · ·
Tank 5000 1 8,500.00 3,500.00 12,000.00	
Nutrient Feed Pump Micronutrient Tank Tank 1 1,500.00 3,800.00 5,300.00 1 4,500.00 3,500.00 8,000.00	
Tank (1 4,500.00 3,500.00 8,000.00	
Nutrient pump \ \ \ 1 1,500.00 3,800.00 5,300.00	
Caustic Tank	
Caustic Dosing Pump 500 gpd 1 1,150.00 3,700.00 4,850.00	
Tank 5500 gal 1 9,500.00 17,500.00 27,000.00	
Iron Tank 200 gal 1 550.00 500 00 1,050.00	
Metering pump 1 850.00 1,550.00 2,400.00	
Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00	
Metering pump 50 gpd 1 850.00 1,550.00 2,400.00	\$73,300.00
Page 2 1019, + 7843	011113
Page 2 103% + 7847	81142
Page 2 1039 + 7843 WST FAC	T. 2.58
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

	Flare Burner Auto pilot,N-gas,air	600 CFM	1 1	10,500.00 6,500.00	4,000.00 3,500.00	14,500 00 10,000.00	\$24,500.00
	System Feed Pump		_	2.500.00	4.000.00	47.000.00	Ψ24,300.00
	Cent	1200 gpm, 40' TDH s/s	2	6,500.00	4,600.00	17,600.00	
	System Recirc Pump	2000 701 TDLL =/-	2	9,500.00	7,500.00	26,500.00	
	Cent	3000 gpm 70' TDH s/s	2	9,500.00	7,300.00	20,300.00	\$24,500.00
	÷						
	Aerobic Secondary						
	Feed Pump	1100 gpm 40' TDH s/s	2	6,500.00	4,200.00	17,200 00	
1-603	Feed Pump Aeraled Lagoon 7608	2.5 MM gal	1	100,000.00	750,000.00	850,000.00	
	Floating aerators	8 x 50 hp	8	35,000.00	30,000.00	310,000 00	
							\$1,177,200 00
	Clarifier	275,000 gal	1	225,000.00	125,000.00	350,000.00	
	Sludge pumps	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	
	Effluent pumps/wet wells	2x25hp cent	2	3,500 00	10,500.00	17,500 00	4004 100 00
					05 000 00	075 000 00	\$381,400.00
	Belt Thickener		1	210,000.00	65,000.00	275,000 00	
	Piping	Yard	1	62,000.00	78,000.00	140,000.00	
	Sludge holding Tanks/Load out		1	45,000.00	25,000.00	70,000.00	£40£ 000 00
	- 1						\$485,000.00
	Sand Filters	0	0	0.00	0.00	0.00	
	VortiSand Filters	0	0	0.00	0.00	0.00	
	Surge Tanks	0	U	0.00	0.00	0.00	\$0.00
	Chlorinator						ψ0.00
	Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
	Metering system	-	ō	0.00	0.00	0.00	
	Contact Tank	0	Ō	0.00	0.00	0.00	
	C.T. Aerator	0	0	0.00	0.00	0.00	
	•						\$0.00

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	475,000.00	475,000.00	\$475,000 00 ⁺
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Wealher Protection Power Outage Protection		. 1		475,000 00	\$173,000 00
Buildings	Control Building	1		125,000.00	
Fencing MCC				55,000.00	
Site Electrical Subcontractors					\$655,000.00 *
Permits and Fees Taxes				35,000.00	\$400 ,000.00
Insurance					\$35,000.00 #
TOTAL					\$ 6,013,805.00
Plus 12 % Contingency		LOSS OUNO PIPE INST OF FETTIME	6,013,805 4,848,805 518,100 518,100		\$ <u>6,735,461.60</u>

Page 4

Equipment Num :: M-606

Eqipment Name :: Biogas Emergency Flare

Associated PFD :: PFD-P100-A602

Equipment Type :: MISCELLANEOUS

Equipment Category :: MISCELLANEOUS Equipment Description:: FLARE AND PILOT

Equipment Description:: FLARE AND Number Required :: 1

Number Spares :: 0

Scaling Stream :: 614

Base Cost :: 20739.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 2572.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor Basis:: VENDOR Install. Factor Basis:: VENDOR Scale Factor Exponent:: 0.6000 Scale Factor Basis :: DEFAULT

Material of Const :: SS
Date Modified :: 01/13/99

Eq. No. Eq. Name Associated PFD M-606

Biogas Handling System A602

Stream for Design Stream Description Flow Rate Average MW Ave Density Flowrate	Rea	614 actor Outlet 2572 Kg/hr 22.80 0.06 lb/cf 1,676 cfm	R9809G R9809G R9809G
Phoenix Bio-Systems, Inc Case 1	\$	13,000	Purchase
	\$	150 cfm 10,063 1,77	Installation w/prorated pipe & inst Installation Factor
Phoenix Bio-Systems, Inc Case 2	\$	17,000 600 cfm	
	\$	10,122 1.60	Installation w/prorated pipe & inst Installation Factor
Scaling Factor		0.19	
Average Installation Factor		1.68	
Scaled up Cost	\$	20,739	for 1676 cfm
Scaling Stream		614	
Scaling Rate		2572	
Scaling Units		Kg/hr	

Eq. Design2.xls 12/4/98

Case 1 - Capital Cost - Combined Anaerobic and Aerobic Treatment - NREL Dil Acid/ 2stg Softwood

CLIENT:

NREL

766 gpm

PHONE/FAX:

PROJECT NUMBER:

DATE:

5/18/98

TYPE:

Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d

LOAD RATE: COD:

4,173 mg/l and 334 mg/l

FLOW:

, 2011.						
ITEM Treatability Laboratory Analysis Preliminary Design	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals \$0 00
Equalization 2						ψ0.00
Equalization Dimensions	36'd x 44'h AOS SI St					
Capacity (gal)	330000 gal	· 1	325,000.00	86,000.00	411,000.00	\$411,000.00
Main Reactor						
Dimensions	24'd x 60'h AOS	2				
Capacity (gal)	385,000 gal <	1	350,000.00	95,000.00	445,000.00	
Distribution Manifold	ICM s/s	8	4,950.00	10,500.00	50,100.00	
Overflow collection system	PVC	2	3,500.00	7,500.00	14,500.00	
Separator	10 x 12 Custom	2	24,500.00	17,500.00	66,500.00	
Sample Cocks	1" PVC	24	50.00	1,200.00	2,400.00	
Packing	TriPack PP	2600	12.00	2,500.00	33,700.00	
Insulation	9000 ft2	9050	7.00		63,350.00	
						\$675,550.00
Decarbonator						
Capacity	3,000 gal	1	14,500.00	17,500.00	32,000.00	
Dimensions	6'd × 18'h				0,00	
Distributor	s/s	1	4,850.00	8,700.00	13,550.00	
Packing	TriPack 3.5 PP	400	12.00	1,500.00	6,300.00	
Demister		1	1,500.00	1,000.00	2,500.00	
Gratings	FRP	1	3,500.00	3,000.00	6,500.00	
Fan	3 hp	1	1,250.00	2,200.00	3,450.00	
Drain						

\$64,300.00

		C				
Controls						
Field Instruments		1	85,000.00	8,500.00	93,500.00	
Pressure Ind		12	250.00	, 750.00	3,750.00	
Temp Indicators		12	250.00	750.00	3,750 00	
pH Controller		4	2,500.00	2,000.00	12,000.00	
Biogas Meter		1	4,300.00	1,250.00	5,550.00	
Panel		1	3,800.00	2,250.00	6,050.00	
PLC		1	9,500.00	5,500.00	15,000.00	
Control computer		1	10,500.00	7,500.00	18,000.00	
Software		1	4,000.00	12,000.00	16,000.00	
1						\$173,600 00
Temp Control		_	0.00	0.00	0.00	
Hot water heater		0	0.00	0.00	0.00	
Heat Exch		2	6,500.00	14,500.00	27,500.00	#07 F00 00
						\$27,500.00
BioGas Scrubber				7.000.00	44400.00	
Capacity	300 cf	1	6,500.00	7,600.00	14,100.00	
Grating	FRP	1	1,800.00	3,350.00	5,150.00	
Media	280	280	7.50	1,550.00	3,650.00	****
						\$22,900.00
Piping						
PVC		1	75,000.00	55,000.00	130,000.00	
Heat trace/insulate		1	12,500.00	28,000.00	40,500.00	
. ~						\$170,500.00
Macronutrient Tank \						
∖ Tank	5000	1	8,500.00	3,500.00	12,000.00	
Nutrient Feed Pump /		1	1,500.00	3,800.00	5,300.00	
Nutrient Feed Pump Micronutrient Tank Tank Nutrient pump	•					
∠ Tank / \\0°	3000	1	4,500.00	3,500.00	8,000.00	
		1	1,500.00	3,800.00	5,300.00	
Caustic Tank						
Caustic Dosing Pump	500 gpd	1	1,150.00	3,700.00	4,850.00	
/Tank /	5500 gal	1	9,500.00	17,500.00	27,000.00	
/ Iron Tank	200 gal	1	550.00	500.00	1,050.00	
/ Metering pump /		1	850.00	1,550.00	2,400.00	
Phosphate Tank /	1000 gal	1	2,500.00	2,500.00	5,000.00	
Metering pump	50 gpd	1	850.00	1,550.00	2,400.00	
/		ı	u =			\$73,300.00
		3	31,400	41900		

Page 2

ka L.		f				
Flare M L OV						
Burner M	150 CFM	1	8,500.00	4,000.00	12,500.00	
Auto pilot,N-gas,air		1	4,500.00	3,500.00	8,000.00	
• •				+ 2562.5	ξ'n	\$20,500.00
System Feed Pump						
Cent	766 gpm, 40' TDH s/s	2	4,900.00	2,700.00	12,500.00	
System Recirc Pump						
Cent	1500 gpm 70' TDH s/s	2	8,000.00	4,500.00	20,500.00	
						\$20,500.00
:						
Aerobic Secondary						
Feed Pump	766 gpm 40' TDH s/s	2	4,900.00	3,500.00	13,300.00	
Aerated Lagoon	0.9 mgal	1		500,000.00	500,000.00	
Floating aerators	4x25 hp, 2 x 50 hp	6	25,000.00	22,000.00	172,000.00	
						\$685,300.00
Clarifier	180,000 gal	1	155,000.00	115,000 00	270,000.00	
Sludge pumps	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	
Effluent pumps/wet wells	2x25hp cent	2	3,500.00	10,500.00	17,500 00	
						\$301,400.00
Belt Thickener		1	110,000.00	42,000.00	152,000.00	,
Piping	Yard	1	42,000.00	67,000.00	109,000.00	
Sludge holding Tanks/Load out		1	45,000.00	25,000.00	70,000.00	
						\$331,000.00
Sand Filters	_					
VortiSand Filters	0	0	0.00	0.00	0.00	
Surge Tanks	0	0	0.00	0.00	0.00	
						\$0.00
Chlorinator	•	_		0.00		
Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
Metering system	0	0	0.00	0.00 0.00	0.00 0.00	
Contact Tank	0	0	0.00			
C.T. Aerator	0	0	0.00	0.00	0.00	\$0.00
						\$0.00

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	250,000.00	250,000.00	\$250,000.0C
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Weather Protection Power Outage Protection		1		295,000.00	
Buildings	Control Building	1		125,000.00	
Fencing MCC				55,000.00	
Site Electrical Subcontractors					
Permits and Fees Taxes				35,000.00	\$475,000.00
Insurance					\$35,000.00
TOTAL			a)		\$3,737,350.0
Plus 12 % Contingency		37 ² 7,3	7550 		\$4,185,832 <u>.0</u>
	t.	lon or 1 37 37,37,37 29 7 37 37 37 37 37 37 37 37 37 37 37 37 3	12.5%		
•		6,616			
		Page 4			

(

(

CLIENT: PHONE/FAX:

NREL

PROJECT NUMBER: DATE:

TYPE:

5/18/98

Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 6510 mg/l & 520 mg/l 1105 gpm

LOAD RATE: COD: FLOW:

ITEM	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals
Treatability						
Laboratory Analysis Preliminary Design						
Preniminary Design						\$0.00
Equalization						
Dimensions						
Capacity (gal)	500,000	1	450,000.00	100,000.00	550,000.00	* 550,000,00
						\$550,000.00
Main Reactor		4				
Dimensions	26' d x 60'hAOS aqua St	4	750,000.00	175,000.00	925,000.00	
Capacity (gal)	950,000	16	4,950.00	32,500.00	111,700.00	
Distribution Manifold	ICM s/s		•		84.000.00	
Overflow collection system	PVC	4	15,500.00	22,000.00		
Separator	10 x 12 FRP Custom	4	28,000.00	38,700.00	150,700.00	
Sample Cocks 🔨 🖟	1" PVC	36	50.00	1,200.00	3,000.00	
Packing	TriPack PP	6370	12.00	2,500.00	78,940.00	
Insulation		19600	7.00	1,3 00 B	78,940.00 , _{,,} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			1218,69	371, 40 C P/	.6	\$1,490,540.00
Decarbonator Decarbonator				159,200 43	,, ₁ , ₆ ,5	1649305 135,25
Capacity	5,000 gal	1	22,500.00	27,500.00	50,000.00	
Dimensions	8'd x 18				0.00	
Distributor	s/s	1	7,590.00	9,800 00	17,390.00	
Packing	TriPack 3.5 PP	700	12.00	1,500.00	9,900.00	
Demister		1	2,500.00	1,000.00	3,500.00	
Gratings	FRP	1	4,500.00	3,000.00	7,500.00	
Fan	4 hp	1	1,250.00	2,200.00	3,450.00	
Drain						
			46,740	95,000		\$91,740.00
			40,	-1 +		•

Page 1

Controls 1			·				
Field Instruments Pressure Ind							
Pressire ind Temp Indicators Place 18			1	85,000.00	8,500.00	93,500.00	
Temp Indicators 18					750.00	5,250.00	
Description Control			18	250.00	750.00	5,250.00	
Biogas Meter	•		6	2,500.00	2,000.00	17,000.00	
Panel	•		1	4,300.00	1,250.00	5,550.00	
PLC			1	3,800.00	2,250.00	6,050.00	
Control computer Soltware 1 10,500.00 7,500.00 18,000.00 1 4,000.00 12,000.00 16,000.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,500.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,600.00 \$181,500.00 \$181,600.00 \$181			1	9,500.00	5,500.00		
1			1	10,500.00	7,500.00	•	
Temp Control Hot water heater Heat Exch	•		1	4,000.00	12,000.00	16,000.00	
Hot water heater Heat Exch							\$181,600.00 [*]
Heat Exch Heat Exch Heat Exch Heat Exch 1			0	0.00	0.00	0 00	
Sacrable							
Capacity 800 cf 1 10,800.00 7,800.00 18,600.00 Grating FRP 1 2,200.00 4,550.00 6,750.00 Media 650 CF 750 7,50 1,550.00 7,175.00 7,175.00 \$32,525.00 Piping PVC 1 1 125,000.00 97,000.00 222,000.00 Piping PVC 1 32,000.00 45,000.00 77,000.00 \$299,000.00 Macronutrient Tank Tank 5000 1 8,500.00 3,500.00 12,000.00 \$299,000.00 Mutrient Feed Pump 1 1,500.00 3,800.00 5,300.00 Micronutrient Tank Tank 3000 1 4,500.00 3,800.00 5,300.00 Mutrient pump 1 1,500.00 3,800.00 5,300.00 Fank 5500 gal 1 1,500.00 3,700.00 4,850.00 Fank 5500 gal 1 9,500.00 17,500.00 27,000.00 Metering pump 1 850.00 1,550.00 2,400.00 Metering pump 50 gpd 1 1,550.00 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 Fank Fank 1000 gal 1 2,500.00 2,500.00 5,000.00 Fank Fank 1000 gal 1 850.00 1,550.00 2,400.00 Fank Fank 1000 gal 1 8	Heat Excii		2	12,300.00	72,500.00	07,000.00	\$37,500.00 [*]
Grating FRP 1 2,200.00 4,550.00 6,750.00 Media 650 CF 750 7.50 1.550.00 7,175 00 \$32,525.00 Piping PVC 1 125,000.00 97,000.00 222,000.00 PVC 1 32,000.00 45,000.00 77,000.00 \$299,000.00 PVC Pteat trace/Insulate 1 32,000.00 45,000.00 77,000.00 \$299,000.00 PVC Pteat trace/Insulate 1 1,500.00 3,500.00 12,000.00 PVC				10 800 00	7 800 00	18 600 00	
Media 650 CF 750 7.50 1,550.00 7,175 00 \$32,525.00 Piping PVC 1 1 125,000.00 97,000.00 222,000.00 Heat trace/Insulate 1 32,000.00 45,000.00 77,000.00 \$299,000.00 Macronutrient Tank Tank 5000 1 8,500.00 3,500.00 12,000.00 \$299,000.00 Nutrient Feed Pump 1 1,500.00 3,800.00 5,300.00 Micronutrient Tank 3000 1 4,500.00 3,500.00 8,000.00 Nutrient pump 1 1,500.00 3,800.00 5,300.00 Caustic Tank 500 gpd 1 1,500.00 3,700.00 4,850.00 Caustic Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 1000 gal 1 550.00 500.00 1,050.00 Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 \$73,300.00						•	
Piping PVC	o .						
PVC	Media	650 CF	750	7.50	1,330.00	7,173 00	\$32,525.00
Heat trace/Insulate 1 32,000.00 45,000.00 77,000.00 \$299,000.00 \$2				105 000 00	07 000 00	222 000 00	
Macronutrient Tank Tank Tank Tank Sound 1 8,500.00 3,500.00 12,000.00 Nutrient Feed Pump 1 1,500.00 3,800.00 5,300.00 Micronutrient Tank Tank 3000 1 4,500.00 3,500.00 8,000.00 Nutrient pump 1 1,500.00 3,800.00 5,300.00 Micronutrient Tank Tank Sound 1 1,500.00 3,800.00 5,300.00 Micronutrient Dosing Pump 500 gpd 1 1,150.00 3,700.00 4,850.00 Micronutrient Tank 200 gal 1 9,500.00 17,500.00 27,000.00 Metering pump 1 850.00 1,550.00 2,400.00 Metering pump 1 850.00 1,550.00 2,400.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 Micronutrient Tank 1000 gal 1 850.00 1,550.00 2,400.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 1,550.00 1,							
Macronutrient Tank 5000 1 8,500.00 3,500.00 12,000.00 Nutrient Feed Pump 1 1,500.00 3,800.00 5,300.00 Micronutrient Tank 3000 1 4,500.00 3,500.00 8,000.00 Nutrient pump 1 1,500.00 3,800.00 5,300.00 Caustic Tank 500 gpd 1 1,150.00 3,700.00 4,850.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00	Heat trace/insulate		1	32,000.00	45,000.00	77,000.00	\$299,000.00
Nutrient Feed Pump Nutrient Tank Tank Tank Tank Soo 1 4,500.00 3,800.00 5,300.00 Nutrient pump 1 1,500.00 3,500.00 8,000.00 Nutrient pump 1 1,500.00 3,500.00 5,300.00 Caustic Tank Caustic Dosing Pump 500 gpd 1 1,150.00 3,700.00 4,850.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump Sou gpd 1 850.00 1,550.00 2,400.00 Metering pump Phosphate Tank 1000 gal 1 850.00 1,550.00 2,400.00 \$73,300.00	Macronutrient Tank						, ,
Micronutrient Tank Tank 3000 1 4,500 00 3,500.00 8,000.00 Nutrient pump 1 1,500.00 3,800.00 5,300.00 Caustic Tank Caustic Dosing Pump 500 gpd 1 1,150.00 3,700.00 4,850.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500 00 1,050.00 Metering pump Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump S0 gpd 1 850.00 1,550.00 2,400.00 Metering pump Nutrient Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump Nutrient Tank 1000 gal 1 850.00 1,550.00 2,400.00 \$73,300.00	Tank	5000	1	8,500.00	3,500.00	12,000.00	
Tank 3000 1 4,500 00 3,500.00 8,000.00 Nutrient pump 1 1,500.00 3,800.00 5,300.00 Caustic Tank 500 gpd 1 1,150.00 3,700.00 4,850.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 2,500.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 \$73,300.00	•		1	1,500.00	3,800.00	5,300.00	
Nutrient pump Caustic Tank Caustic Dosing Pump Tank 5500 gal 1 1,500.00 3,800.00 5,300.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump So gpd 1 850.00 1,550.00 2,400.00 Metering pump Flosphate Tank 1000 gal 1 850.00 1,550.00 2,400.00 \$73,300.00		3000	1	4.500.00	3,500.00	8,000.00	
Caustic Tank Caustic Dosing Pump 500 gpd 1 1,150.00 3,700.00 4,850.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00			. 1	1,500.00	3,800.00	5,300.00	
Caustic Dosing Pump 500 gpd 1 1,150.00 3,700.00 4,850.00 Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00							
Tank 5500 gal 1 9,500.00 17,500.00 27,000.00 Iron Tank 200 gal 1 550.00 500.00 1,050.00 Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00		500 gpd	1	1,150.00	3,700.00	4,850.00	
Iron Tank 200 gal 1 550.00 500 00 1,050.00 Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00			1	9,500.00	17,500.00	27,000.00	
Metering pump 1 850.00 1,550.00 2,400.00 Phosphate Tank 1000 gal 1 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 \$73,300.00		•	1	550.00	500 00	1,050.00	
Phosphate Tank 1000 gal 1 2,500.00 2,500.00 5,000.00 Metering pump 50 gpd 1 850.00 1,550.00 2,400.00 \$73,300.00		<u> </u>	1	850.00	1,550.00	•	
\$73,300.00 \$73,300.00		1000 gal	1	2,500.00	2,500.00		
41900	•	50 gpd	1			•	#72 200 00
Page 2 103% + 7843 81143 Page 2 103% + 7843 WST FACT. 2.58				100	41900		
Page 2 10716 149743 NAST FACT. 2.58				3140	47843	-	81143
1 /// /			Page 2	10.3	4974	13 INST F	ACT. 2.58
					1	11.2.	

-606	Flare Burner Auto pilot,N-gas,air	600 CFM	1	10,500.00 6,500.00 10.7%	4,000.00 3,500.00 + 2621,50	14,500 00 10,000.00	\$24,500 00
	System Feed Pump Cent	1200 gpm, 40' TDH s/s	2	6,500.00	10121.50	17,600.00	
	System Recirc Pump Cent	3000 gpm 70' TDH s/s	2	9,500.00	7,500.00	26,500.00	\$24,500.00
	t.						
	Aerobic Secondary	4400 401 TDLL a/a	2	6,500.00	4.200.00	17,200 00	
_	Feed Pump Aerated Lagoon	1100 gpm 40' TDH s/s	2 1	100,000.00	750,000.00	850,000,00	
T-608	,	2.5 MM gal	8	35,000.00	30,000.00	310,000.00	
	Floating aerators	8 x 50 hp	o	33,000.00	30,000.00	0,000.00	\$1,177,200 00
	Ol ities	275,000 gal	1	225,000.00	125,000.00	350,000.00	
	Clarifier	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	
	Sludge pumps	2x25hp cent	2	3,500.00	10,500.00	17,500.00	
	Effluent pumps/wet wells	ZAZSIIP CCIII	-	-1			\$381,400.00
	Belt Thickener		1	210,000.00	65,000.00	275,000 00	
	Piping	Yard	1	62,000.00	78,000.00	140,000.00	
	Sludge holding Tanks/Load out	raid	1	45,000.00	25,000.00	70,000.00	
	Diage holding famoredad sat						\$485,000.00
	Sand Filters						
	VortiSand Filters	0	0	0.00	0.00	0.00	
	Surge Tanks	0	0	0.00	0.00	0.00	
	ŭ						\$0.00
	Chlorinator				_		
	Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
	Metering system		0	0.00	0.00	0.00	
	Contact Tank	0	0	0.00	0.00	0.00	
	C.T. Aerator	0	0	0.00	0.00	0.00	\$0.00
							φυ.υυ

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	475,000.00	475,000.00	\$475,000.00 **
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Weather Protection Power Outage Protection		1		475,000 00	(110,000.00
Buildings	Control Building	1		125,000.00	
Fencing MCC				55,000.00	
Site Electrical Subcontractors					*******************************
Permits and Fees Taxes				35,000.00	\$655,000.00 [#]
Insurance					\$35,000.00 **
TOTAL					\$ 6,013,805.00
Plus 12 % Contingency		TOTAL LOSS OUHO PIPA INST	6,013,805 4,848,805 518,100		\$ <u>6,735,461.60</u>

Page 4

Wooley, Robert

From:

Dick.Voiles@merrick.com

Sent:

Monday, November 16, 1998 3:00 PM

To:

robert wooley@nrel.gov

Cc:

Jim.Sharpe@merrick.com; James.Kassian@merrick.com; Fran.Ferraro@merrick.com;

Dick.Voiles@merrick.com

Subject:

Anaerobic Digestor Offgas

I just spoke to Joe about an emergency flare on this gas and he said it is essential. So we better add it to the estimate. Joe has already given us a price that we can scale from.

These are stainless steel and are 12 to 25 feet tall. Since they are low pressure they are large in diameter - I would not doubt that ours could hit 30" in diameter. In a refinery or gas plant, flares are a couple of hundred of feet tall based on the largest ground level radiation not frying any operators. I suggest we add this flare to our further work list as our combustibles loading is a lot higher than Joe is used to seeing.

Joe explained that the scrubber on this gas is actually an iron sponge absorber. When I approached SulfaTreat (a proprietary iron sponge process vendor) with our H2S loading they eliminated themselves as not being practical for such a large load. This ion exchange rinse is really a problem.

Equipment Num :: M-612
Eqipment Name :: Filter Precoat System
Associated PFD :: PFD-P100-A603
Equipment Category :: MISCELLANEOUS

Equipment Description:: Tank, Agitator, Pump

Equipment Description:: Tank, Agitator,
Number Required :: 1
Number Spares :: 0
Base Cost :: 3000.00
Cost Basis :: MERRICK98
Cost Year :: 1998
Install. Factor :: 1.4000
Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WM612
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected Power F

Notes :: Expected Power Req: 4 kW. Eq. No. M-612

Eq. Name Filter Precoat System

Associated PFD A603

Stream for Design NA Too small to Scale

Power Requirement 5 hp Estimated

Cost \$ 3,000 Merrick Estimate for Small Tank and Pump

Year 1998

Scaling Stream NA

Equipment Num :: P-602

Eqipment Name :: Anaerobic Reactor Feed Pump
Associated PFD :: PFD-P100-A602

Equipment Type :: CENTRIFUGAL

Equipment Category :: PUMP

Equipment Description:: 876 gpm, 150 ft head

Equipment Description:: 876 gpm, 19

Number Required :: 1

Number Spares :: 1

Scaling Stream :: 612

Base Cost :: 11400.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 188129.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 2 8000

Base Units :: KG/HR Install. Factor :: 2.8000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP602
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected Power F

Notes :: Expected Power Req: 41 kW. Eq. No. P-602

Eq. Name Anerobic Digestor Feed Pump

Associated PFD A602

Stream for Design 612 Stream Description Pump Inlet

 Flow Rate
 188129
 Kg/hr
 R9809G

 Liquid Density
 0.95
 g/cm^3
 R9809G

 Solid Density
 0.00
 g/cm^3
 R9809G

 Frac Solids
 0.000

 Flowrate
 876.3 gpm

 Outlet Head
 150.0 ft

 Estimated Power
 55 hp

 41 kW

Cost Estimation

ICARUS- 1997 \$ 11,400 CS \$ 10,600 CI \$ 15,200 SS

Scaling Stream 612
Scaling Rate 188129
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-602 CP - 100 P-602

EQUIPMENT ITEM DESIGN DATA SHEET

ANSI

NO.	ITEM		SPECIFIED USER	VALUE BY SY		UNITS
EOUTPM	ENT DESIGN DATA					
	MATERIAL SYMBOL		CS	CS		
	DESIGN TEMPERATURE				L20.0	DEG F
	DESIGN PRESSURE				L50.0	PSIG
4.	HEAD		150.0	1	L50.0	FEET
5.	ASA RATING			1	L50	
6.	DRIVER POWER				50.00	HP
7.	DRIVER SPEED			18	300.0	RPM
8.	DRIVER TYPE SYMBOL			MOTOR		
9.	PUMP EFFICIENCY				82.00	PERCENT
SEAL D	ATA					
10.	SEAL TYPE			SNO	3L	
11.	PRIMARY SEAL PIPE PLA	N			11	
12.	SEAL PIPING PIPE TYPE			WEI	LD	
13.	SEAL PIPING MATERIAL			A 1	L06	
PROCES	S DESIGN DATA					
14.	CAPACITY		876.0	8	376.0	GPM
15.	FLUID DENSITY				62.43	PCF
16.	FLUID VISCOSITY				1.000	CPOISE
	RESULTING DESIGN VALU	Έ				HP/GPM
18.	CAPACITY*HEAD			1314	100	GPM -FT
WEIGHT	DATA					
19.	PUMP			Ę	530	LBS
20.	MOTOR			Ę	530	LBS
21.	BASE PLATE			1	L10	LBS
22.	FITTINGS, ETC.			1	L00	LBS
23.	TOTAL WEIGHT			13	300	LBS
VENDOR	COST DATA					
24.	MOTOR			21	L00	USD
	MATERIAL COMPONENT CO	ST		20)55	USD
	SHOP MANPOWER COST)93	USD
	SHOP OVERHEAD				L35	USD
28.	GENERAL OFFICE OVERHE	AD			125	USD
	PROFIT				592	USD
30.	TOTAL COST			114	100	USD
	RESULTING UNIT COST					USD/LBS
32. 33.	RESULTING UNIT COST RESULTING UNIT COST			,	13.01 228.0	USD/GPM
33.	RESULTING UNIT COST			4	420.U	USD/HP

											L/M	
:	MATERIAL:***	M	Α	N	Р	0	W	E	R	***:	RATIO	:

	:	USD	:	USD	MANHOUR	s :US	SD/USD	:
EQUIPMENT&SETTING	; :	11400.	:	935.	50	:	0.082	:
PIPING	:	12288.	:	4532.	245	:	0.369	:
CIVIL	:	356.	:	696.	44	:	1.954	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	5963.	:	1466.	76	:	0.246	:
ELECTRICAL	:	427.	:	697.	35	:	1.631	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	475.	:	777.	57	:	1.636	:
SUBTOTAL	:	30910.	:	9103.	507	:	0.294	:
INSTALLED DIRECT	COST	400	00.	INST'L	COST/PE	RATIO	3.509	

-IPE Version: 4.0 Estimate Base: 1st Quarter 1997 (4.0) June 30, 1997 Run Date: 16NOV98-11:53:19

Equipment Num :: P-606

Eqipment Name :: Aerobic Digestor Feed Pump
Associated PFD :: PFD-P100-A602

Equipment Type :: CENTRIFUGAL

Equipment Category :: PUMP

Equipment Description:: 830 gpm, 150 ft head

Equipment Description:: 830 gpm, 15

Number Required :: 1

Number Spares :: 1

Scaling Stream :: 618

Base Cost :: 10700.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 185782.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 2 8000

Base Units :: KG/HR Install. Factor :: 2.8000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP606
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected Power Req: 41 kW.

Eq. No. P-606

Eq. Name Aerobic Digestor Feed Pump

Associated PFD A602

Stream for Design 618
Stream Description Pump Inlet

 Flow Rate
 185782
 Kg/hr
 R9809G

 Liquid Density
 0.98
 g/cm^3
 R9809G

 Solid Density
 0.00
 g/cm^3
 R9809G

Frac Solids 0.000
Flowrate 831.1 gpm
Outlet Pressure 4.2 atm
Outlet Head 150.0 ft
Estimated Power 54 hp
41 kW

ICARUS- 1997 \$10,700 CS \$9,900 CI \$14,500 SS

Scaling Stream 618
Scaling Rate 185782
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-606 CP - 100 P-606

EQUIPMENT ITEM DESIGN DATA SHEET

ANSI

NO.	ITEM		SPECIFIED USER	VALUE BY SY		UNITS
EOUTPM	ENT DESIGN DATA					
	MATERIAL SYMBOL		CS	CS		
	DESIGN TEMPERATURE				20.0	DEG F
3.	DESIGN PRESSURE				150.0	PSIG
4.	HEAD		150.0	1	50.0	FEET
5.	ASA RATING			1	L50	
6.	DRIVER POWER				40.00	HP
7.	DRIVER SPEED			18	300.0	RPM
8.	DRIVER TYPE SYMBOL			MOTOR		
9.	PUMP EFFICIENCY				82.00	PERCENT
SEAL D	ATA					
10.	SEAL TYPE			SNO	}L	
11.	PRIMARY SEAL PIPE PLA	N			11	
12.	SEAL PIPING PIPE TYPE			WEI	LD	
13.	SEAL PIPING MATERIAL			A 1	106	
PROCES	S DESIGN DATA					
14.	CAPACITY		831.0	8	331.0	GPM
15.	FLUID DENSITY				62.43	PCF
16.	FLUID VISCOSITY				1.000	CPOISE
17.	RESULTING DESIGN VALU	E			0.0481	HP/GPM
18.	CAPACITY*HEAD			1246	550	GPM -FT
WEIGHT	DATA					
19.	PUMP			Ę	30	LBS
20.	MOTOR			4	150	LBS
21.	BASE PLATE			1	10	LBS
22.	FITTINGS, ETC.			1	L00	LBS
23.	TOTAL WEIGHT			12	200	LBS
VENDOR	COST DATA					
24.	MOTOR			17	700	USD
25.	MATERIAL COMPONENT CO	ST		20)52	USD
26.	SHOP MANPOWER COST			20)50	USD
	SHOP OVERHEAD			20	91	USD
28.	GENERAL OFFICE OVERHE	AD			342	USD
	PROFIT				165	USD
30.	TOTAL COST			107	700	USD
	RESULTING UNIT COST					USD/LBS
	RESULTING UNIT COST				12.88	USD/GPM
33.	RESULTING UNIT COST			2	267.5	USD/HP

								L/M	
		:	-MATERIAL-	:***	M A N P	OWER	***: I	RATIO	:
		:	USD	:	USD	MANHOUR	S :US	SD/USD	:
EQUIE	MENT&SETTING	:	10700.	:	856.	46	:	0.080	:
PIPIN	IG	:	12276.	:	4521.	244	:	0.368	:
CIVII		:	328.	:	797.	51	:	2.427	:
STRUC	CTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTE	RUMENTATION	:	5963.	:	1466.	76	:	0.246	:
ELECT	TRICAL	:	427.	:	697.	35	:	1.631	:
INSUI	LATION	:	0.	:	0.	0	:	0.000	:
PAINT	Γ	:	472.	:	770.	56	:	1.632	:
SUBTO	TAL	:	30166.	:	9107.	508	:	0.302	:
INSTA	ALLED DIRECT	COST	3930	00.	INST'L	COST/PE	RATIO	3.673	3
=====		====	=======		=======		=====		====

-IPE Version: 4.0 Estimate Base: 1st Quarter 1997 (4.0) June 30, 1997 Run Date: 16NOV98-11:53:19

Equipment Num :: P-608

Eqipment Name :: Aerobic Sludge Recycle Pump

Associated PFD :: PFD-P100-A603

Equipment Type :: SLURRY

Equipment Category :: PUMP

Equipment Description:: 2.5 gpm, 150 ft head

Equipment Description:: 2.5 gpm,

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 625

Base Cost :: 11100.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 5862.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1 4000 Base Units :: KG/HR Install. Factor :: 1.4000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900

Material of Const :: SS316
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP608
Utility Type :: POWER
Date Modified :: 12/22/98

Scale Factor Basis :: GARRETT

:: Expected Power Req: 1 kW. Operates only part Notes

time. Use same pump as P-610. Therefore, no

spare.

Eq. No. P-608

Eq. Name Aerobic Sludge Recycle Pump

Associated PFD A603

Stream for Design 625 Operates Part time, same as P-610, serves as spare

Stream Description Pump Inlet

Flow Rate 5862 Kg/hr R9809G Average Density 1.02 g/cm^3 R9809G

Frac Solids 0.046
Flowrate 25.3 gpm
Outlet Head 150.0 ft
Estimated Power 2 hp
1 kW

Slurry Pump Cost Estimation

ICARUS- 1997 \$ 11,100 SS316 Only material avilable in ICARUS for Slurry Pump

Scaling Stream 625
Scaling Rate 5862
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-610 P - 100 P-610

COMPONENT DATA SHEET

SLURRY

CODE OF ACCOUNT: 167

COMPONENT DESIGN DATA:

MATERIAL SS316
CAPACITY 25.00 GPM
HEAD 150.00 FEET
DRIVER POWER 1.50 HP
SPEED 1800.00 RPM

COST DATA:

ESTIMATED PURCHASE COST USD 11100.

L/M

:---MATERIAL--:*** M A N P O W E R ***: RATIO :

USD : USD MANHOURS :USD/USD :

EQUIPMENT&SETTING : 11100. : 186. 10 : 0.017 :

PIPING : 2294. : 3848. 207 : 1.678 :

CIVIL : 127. : 430. 27 : 3.385 :

STRUCTURAL STEEL : 0. : 0. 0 : 0.000 :

INSTRUMENTATION : 1273. : 54. 3 : 0.043 :

ELECTRICAL : 393. : 668. 34 : 1.699 :

INSULATION : 0. : 0. 0 : 0.000 :

PAINT : 0. : 0. 0 : 0.000 :

SUBTOTAL : 15187. : 5186. 281 : 0.341 :

INSTALLED DIRECT COST 20400. INST'L COST/PE RATIO 1.838

IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 16NOV98-11:53:19

Equipment Num :: P-610
Eqipment Name :: Aerobic Sludge Pump
Associated PFD :: PFD-P100-A603
Equipment Type :: SLURRY

Equipment Category :: PUMP

Equipment Description:: 25.3 gpm, 150 ft head

Equipment Description:: 25.3 gpm,
Number Required :: 1

Number Spares :: 0

Scaling Stream :: 625

Base Cost :: 11100.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 5862.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1,4000 Base Units :: KG/HR Install. Factor :: 1.4000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900 Scale Factor Basis :: GARRETT

Material of Const :: SS316
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP610
Utility Type :: POWER
Date Modified :: 12/22/98

Notes :: Expected power Req: 1 kW. SS 316 only material

available in Icarus. P-608 serves as a spare.

Eq. No. P-610

Eq. Name Aerobic Sludge Pump

Associated PFD A603

Stream for Design 625 Stream Description Pump Inlet

Flow Rate 5862 Kg/hr R9809G Average Density 1.02 g/cm^3 R9809G

Frac Solids 0.046
Flowrate 25.3 gpm
Outlet Head 150.0 ft
Estimated Power 2 hp
1 kW

Slurry Pump Cost Estimation

ICARUS- 1997 \$ 11,100 SS316 Only material available in ICARUS for Slurry Pump

Scaling Stream 625
Scaling Rate 5862
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-610 P - 100 P-610

COMPONENT DATA SHEET

SLURRY

CODE OF ACCOUNT: 167

COMPONENT DESIGN DATA:

MATERIAL SS316
CAPACITY 25.00 GPM
HEAD 150.00 FEET
DRIVER POWER 1.50 HP
SPEED 1800.00 RPM

COST DATA:

ESTIMATED PURCHASE COST USD 11100.

L/M

:---MATERIAL--:*** M A N P O W E R ***: RATIO :

USD : USD MANHOURS :USD/USD :

EQUIPMENT&SETTING : 11100. : 186. 10 : 0.017 :

PIPING : 2294. : 3848. 207 : 1.678 :

CIVIL : 127. : 430. 27 : 3.385 :

STRUCTURAL STEEL : 0. : 0. 0 : 0.000 :

INSTRUMENTATION : 1273. : 54. 3 : 0.043 :

ELECTRICAL : 393. : 668. 34 : 1.699 :

INSULATION : 0. : 0. 0 : 0.000 :

PAINT : 0. : 0. 0 : 0.000 :

SUBTOTAL : 15187. : 5186. 281 : 0.341 :

INSTALLED DIRECT COST 20400. INST'L COST/PE RATIO 1.838

IPE Version: 4.0

Estimate Base: 1st Quarter 1997 (4.0)

June 30, 1997

Run Date: 16NOV98-11:53:19

Equipment Num :: P-611

Eqipment Name :: Aerobic Digestion Outlet Pump

Associated PFD :: PFD-P100-A603

Equipment Type :: CENTRIFUGAL

Equipment Category :: PUMP

Equipment Description:: 828 gpm, 150' head

Equipment Description:: 828 gpm, 15

Number Required :: 1

Number Spares :: 1

Scaling Stream :: 621

Base Cost :: 10700.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 187827.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 2 8000

Base Units :: KG/HR Install. Factor :: 2.8000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP611
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected power F

Notes :: Expected power Req: 41 kW. Eq. No. P-611

Eq. Name Aerobic Digestion Outlet Pump

Associated PFD A603

Stream for Design 621
Stream Description Pump Inlet

Flow Rate 187827 Kg/hr R9809G Liquid Density 1.00 g/cm^3 R9809G

Frac Solids 0.001
Flowrate 828.4 gpm
Outlet Head 150 ft
Estimated Power 55 hp
41 kW

Cost Estimation

ICARUS- 1997 \$ 10,700 CS \$ 9,900 CI \$ 14,500 SS

Scaling Stream 621
Scaling Rate 187827
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-611 CP - 100 P-611

EQUIPMENT ITEM DESIGN DATA SHEET

ANSI

NO.	ITEM	VALUE BY	SPECIFIED USER	VALUE BY SY	USED /STEM	UNITS
EOUTPMI	ENT DESIGN DATA					
1.	MATERIAL SYMBOL			CS		
	DESIGN TEMPERATURE				L20.0	DEG F
	DESIGN PRESSURE				L50.0	PSIG
	HEAD		150.0		L50.0	FEET
5.	ASA RATING			1	L50	
6.	DRIVER POWER				40.00	HP
7.	DRIVER SPEED			18	300.0	RPM
8.	DRIVER TYPE SYMBOL			MOTOR		
9.	PUMP EFFICIENCY				82.00	PERCENT
SEAL DA	ATA					
10.	SEAL TYPE			SNO	3L	
11.	PRIMARY SEAL PIPE PLAN	N			11	
12.	SEAL PIPING PIPE TYPE			WEI	LD	
13.	SEAL PIPING MATERIAL			A 1	L06	
PROCESS	S DESIGN DATA					
14.	CAPACITY		828.0	8	328.0	GPM
15.	FLUID DENSITY				62.43	PCF
16.	FLUID VISCOSITY				1.000	CPOISE
17.	RESULTING DESIGN VALUE	E			0.0483	HP/GPM
18.	CAPACITY*HEAD			1242	200	GPM -FT
WEIGHT	DATA					
19.	PUMP			į	530	LBS
	MOTOR			4	150	LBS
21.	BASE PLATE			1	L10	LBS
	FITTINGS, ETC.				L00	LBS
23.	TOTAL WEIGHT			12	200	LBS
	COST DATA					
	MOTOR				700	USD
25.	MATERIAL COMPONENT CO	ST)52	USD
	SHOP MANPOWER COST)47	USD
27.	SHOP OVERHEAD				088	USD
28.	GENERAL OFFICE OVERHER	AD			341	USD
	PROFIT				172	USD
30.	TOTAL COST			107	700	USD
31.	RESULTING UNIT COST				8.917	USD/LBS
32.	RESULTING UNIT COST			_	12.92	USD/GPM
33.	RESULTING UNIT COST			2	267.5	USD/HP

								L/M	
		:	-MATERIAL-	:***	M A N P	OWER	***: I	RATIO	:
		:	USD	:	USD	MANHOUR	S :US	SD/USD	:
EQUIE	MENT&SETTING	:	10700.	:	856.	46	:	0.080	:
PIPIN	IG	:	12276.	:	4521.	244	:	0.368	:
CIVII		:	328.	:	797.	51	:	2.427	:
STRUC	CTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTE	RUMENTATION	:	5963.	:	1466.	76	:	0.246	:
ELECT	TRICAL	:	427.	:	697.	35	:	1.631	:
INSUI	LATION	:	0.	:	0.	0	:	0.000	:
PAINT	Γ	:	472.	:	770.	56	:	1.632	:
SUBTO	TAL	:	30166.	:	9107.	508	:	0.302	:
INSTA	ALLED DIRECT	COST	3930	00.	INST'L	COST/PE	RATIO	3.673	3
=====		====	=======		=======		=====		====

-IPE Version: 4.0 Estimate Base: 1st Quarter 1997 (4.0) June 30, 1997 Run Date: 16NOV98-11:53:19

Equipment Num :: P-614

Eqipment Name :: Sludge Filtrate Recycle Pump
Associated PFD :: PFD-P100-A603

Equipment Type :: CENTRIFUGAL

Equipment Category :: PUMP

Equipment Description:: 22 gpm, 150' head

Equipment Description:: 22 gpm, 1

Number Required :: 1

Number Spares :: 1

Scaling Stream :: 627

Base Cost :: 6100.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 4885.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 2 8000 Base Units :: KG/HR Install. Factor :: 2.8000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP614
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected Power F

Notes :: Expected Power Req: 1 kW. Eq. No. P-614

Eq. Name Sludge Filtrate Recycle Pump

Associated PFD A603

Stream for Design 627
Stream Description Pump Inlet

Flow Rate 4885 Kg/hr R9809G Liquid Density 1.00 g/cm^3 R9809G

Frac Solids 0.000
Flowrate 21.6 gpm
Outlet Head 150.0 ft
Estimated Power 1.4 hp
1.1 kW

Cost Estimation

ICARUS- 1997 \$ 6,100 CS \$ 5,600 CI \$ 8,600 SS

Scaling Stream 627
Scaling Rate 4885
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-614 CP - 100 P-614

EQUIPMENT ITEM DESIGN DATA SHEET

ANSI

NO.	ITEM		SPECIFIED USER		USED YSTEM	UNITS
EOIIT PMI	ENT DESIGN DATA					
	MATERIAL SYMBOL			CS		
	DESIGN TEMPERATURE				120.0	DEG F
	DESIGN PRESSURE				150.0	PSIG
4.	HEAD		150.0		150.0	FEET
5.	ASA RATING				150	
6.	DRIVER POWER				2.000	HP
7.	DRIVER SPEED			1	300.0	RPM
8.	DRIVER TYPE SYMBOL			MOTOR		
9.	PUMP EFFICIENCY				50.00	PERCENT
SEAL D	ATA					
10.	SEAL TYPE			SNO	GL	
11.	PRIMARY SEAL PIPE PLAN	N			11	
12.	SEAL PIPING PIPE TYPE			WE	LD	
	SEAL PIPING MATERIAL			A	106	
PROCES	S DESIGN DATA					
14.	CAPACITY		22.00		22.00	GPM
15.	FLUID DENSITY				62.43	PCF
16.	FLUID VISCOSITY				1.000	CPOISE
17.	RESULTING DESIGN VALUE	E			0.0909	HP/GPM
18.	CAPACITY*HEAD			3	300	GPM -FT
WEIGHT	DATA					
19.	PUMP				440	LBS
20.	MOTOR				70	LBS
21.	BASE PLATE				90	LBS
22.	FITTINGS, ETC.				80	LBS
23.	TOTAL WEIGHT				580	LBS
VENDOR	COST DATA					
24.	MOTOR				190	USD
25.	MATERIAL COMPONENT CO	ST		1	580	USD
26.	SHOP MANPOWER COST			1	302	USD
27.	SHOP OVERHEAD			1	328	USD
28.	GENERAL OFFICE OVERHE	AD			765	USD
29.	PROFIT				35	USD
30.	TOTAL COST			6	100	USD
31.	RESULTING UNIT COST				8.971	USD/LBS
	RESULTING UNIT COST			:	277.3	USD/GPM
33.	RESULTING UNIT COST			3	050.0	USD/HP

	L/M
--	-----

	:	MATERIAL-	:***	M A N P	O W E R **	*:]	RATIO	:
	:	USD	:	USD	MANHOURS	: U	SD/USD	:
EQUIPMENT&SETTING	:	6100.	:	458.	25	:	0.075	:
PIPING	:	1525.	:	3654.	196	:	2.397	:
CIVIL	:	131.	:	438.	28	:	3.341	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	4032.	:	1466.	76	:	0.364	:
ELECTRICAL	:	393.	:	668.	34	:	1.699	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	98.	:	211.	15	:	2.159	:
SUBTOTAL	:	12279.	:	6896.	374	:	0.562	:
INSTALLED DIRECT (COST	1920	00. =====	INST'L	COST/PE RA	TIO	3.148	3 ===:

Equipment Num :: P-616

Eqipment Name :: Treated Water Pump

Associated PFD :: PFD-P100-A603

Equipment Type :: CENTRIFUGAL

Equipment Category :: PUMP

Equipment Description:: 803 gpm, 100 ft head

Equipment Description:: 803 gpm, 10

Number Required :: 1

Number Spares :: 1

Scaling Stream :: 624

Base Cost :: 10600.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 181965.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 2 8000

Base Units :: KG/HR Install. Factor :: 2.8000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP616
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected Power Req: 40 kW.

Scale Factor Basis :: GARRETT

Eq. No. P-616

Eq. Name Treated Water Pump

Associated PFD A603

Stream for Design 624
Stream Description Pump Inlet

Flow Rate 181965 Kg/hr R9809G Liquid Density 1.00 g/cm^3 R9809G

 Frac Solids
 0.000

 Flowrate
 803.4 gpm

 Outlet Head
 150.0 ft

 Estimated Power
 53 hp

 40 kW

Cost Estimation

ICARUS- 1997 \$ 9,900 CS \$ 10,600 CI

\$ 14,400 SS

Scaling Stream 624
Scaling Rate 181965
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-616 CP - 100 P-616

EQUIPMENT ITEM DESIGN DATA SHEET

ANSI

NO.	ITEM	VALUE BY	SPECIFIED USER	VALUE BY SY		UNITS
EOUTPMI	ENT DESIGN DATA					
1.	MATERIAL SYMBOL			CS		
	DESIGN TEMPERATURE				20.0	DEG F
	DESIGN PRESSURE				50.0	PSIG
4.	HEAD		150.0	1	50.0	FEET
5.	ASA RATING			1	50	
6.	DRIVER POWER				40.00	HP
7.	DRIVER SPEED			18	00.0	RPM
8.	DRIVER TYPE SYMBOL			MOTOR		
9.	PUMP EFFICIENCY				82.00	PERCENT
SEAL DA	ATA					
10.	SEAL TYPE			SNG	L	
11.	PRIMARY SEAL PIPE PLAN	N			11	
12.	SEAL PIPING PIPE TYPE			WEL	D	
13.	SEAL PIPING MATERIAL			A 1	06	
PROCESS	S DESIGN DATA					
14.	CAPACITY		803.0	8	03.0	GPM
15.	FLUID DENSITY				62.43	PCF
16.	FLUID VISCOSITY				1.000	CPOISE
17.	RESULTING DESIGN VALUE	Ε			0.0498	HP/GPM
18.	CAPACITY*HEAD			1204	50	GPM -FT
WEIGHT	DATA					
19.	PUMP			5	30	LBS
20.	MOTOR			4	50	LBS
21.	BASE PLATE			1	10	LBS
22.	FITTINGS, ETC.			1	00	LBS
23.	TOTAL WEIGHT			12	00	LBS
VENDOR	COST DATA					
24.	MOTOR			17	00	USD
25.	MATERIAL COMPONENT COS	ST		20	51	USD
26.	SHOP MANPOWER COST			20	23	USD
27.	SHOP OVERHEAD			20	64	USD
28.	GENERAL OFFICE OVERHER	AD		13	33	USD
	PROFIT			14	29	USD
30.	TOTAL COST			106	00	USD
31.	RESULTING UNIT COST				8.833	USD/LBS
32.	RESULTING UNIT COST				13.20	USD/GPM
33.	RESULTING UNIT COST			2	65.0	USD/HP

	L/M
--	-----

	:	MATERIAL-	:***	M A N P	OWER	***:]	RATIO	:
	:	USD	:	USD	MANHOUR	S :U:	SD/USD	:
EQUIPMENT&SETTING	:	10600.	:	856.	46	:	0.081	:
PIPING	:	12276.	:	4521.	244	:	0.368	:
CIVIL	:	328.	:	797.	51	:	2.427	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	5963.	:	1466.	76	:	0.246	:
ELECTRICAL	:	427.	:	697.	35	:	1.631	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	472.	:	770.	56	:	1.632	:
								-
SUBTOTAL	:	30066.	:	9107.	508	:	0.303	:
INSTALLED DIRECT (COST	3920	00.	INST'L	COST/PE	RATIO	3.698	3
	=							

-IPE Version: 4.0 Estimate Base: 1st Quarter 1997 (4.0) June 30, 1997 Run Date: 16NOV98-11:53:19

Equipment Num :: P-630

Eqipment Name :: Recycled Water Pump
Associated PFD :: PFD-P100-A601

Equipment Type :: CENTRIFUGAL

Equipment Category :: PUMP

Equipment Description:: 790 gpm, 150 ft head

Equipment Description:: 790 gpm, 19

Number Required :: 1

Number Spares :: 1

Scaling Stream :: 602

Base Cost :: 10600.00

Cost Basis :: ICARUS

Cost Year :: 1997

Base for Scaling :: 179446.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 2,8000

Base Units :: KG/HR Install. Factor :: 2.8000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7900 Scale Factor Basis :: GARRETT

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WP630
Utility Type :: POWER
Date Modified :: 12/22/98
Notes :: Expected Power F

:: Expected Power Req. 39 kW. Notes

Eq. No. P-630

Eq. Name Recycle Water Pump

Associated PFD A601

Stream for Design 602 Stream Description Pump Inlet

Flow Rate 179446 Kg/hr R9809G Average Density 1.00 g/cm^3 R9809G

Frac Solids 0.009
Flowrate 790.7 gpm
Outlet Head 150.0 ft
Estimated Power 52 hp
39 kW

Cost Estimation

ICARUS- 1997 \$ **9,800** CS **10,600** CI

\$ 14,300 SS

Scaling Stream 602
Scaling Rate 179446
Scaling Units Kg/hr

Eq. Design2.xls 12/22/98

P-630 CP - 100 P-630

EQUIPMENT ITEM DESIGN DATA SHEET

ANSI

EQUIPMENT DESIGN DATA	NO.	ITEM		SPECIFIED USER		USED YSTEM	UNITS
1. MATERIAL SYMBOL 2. DESIGN TEMPERATURE 3. DESIGN PRESSURE 4. HEAD 5. ASA RATING 6. DRIVER POWER 7. DRIVER SPEED 8. DRIVER TYPE SYMBOL 9. PUMP EFFICIENCY SEAL DATA 10. SEAL TYPE 11. PRIMARY SEAL PIPE PLAN 11. PRIMARY SEAL PIPE TYPE 12. SEAL PIPING MATERIAL 14. CAPACITY 15. FLUID DENSITY 16. FLUID DENSITY 16. FLUID DENSITY 17. RESULTING DESIGN VALUE 18. CAPACITY*HEAD 19. PUMP 18. CAPACITY*HEAD 19. PUMP 20. MOTOR 21. BASE PLATE 22. FITTINGS, ETC. 23. TOTAL WEIGHT 24. MOTOR 25. MATERIAL COMPONENT COST 26. SHOP MANPOWER COST 21. DATA 24. MOTOR 25. MATERIAL COMPONENT COST 20. MOTOR 26. SHOP MANPOWER COST 215. DESIGN DATA 24. MOTOR 25. MATERIAL COMPONENT COST 20. USD 20. MATERIAL COMPONENT COST 20. MOTOR 25. MATERIAL COMPONENT COST 20. USD 20. MATERIAL COMPONENT COST 20. USD	EOUTPMI	ENT DESIGN DATA					
2. DESIGN TEMPERATURE 3. DESIGN PRESSURE 4. HEAD 5. ASA RATING 6. DRIVER POWER 7. DRIVER SPEED 8. DRIVER TYPE SYMBOL 9. PUMP EFFICIENCY SEAL DATA 10. SEAL TYPE 11. PRIMARY SEAL PIPE PLAN 12. SEAL PIPING MATERIAL 12. SEAL PIPING MATERIAL 14. CAPACITY 15. FLUID DENSITY 16. FLUID VISCOSITY 17. RESULTING DESIGN VALUE 18. CAPACITY*HEAD 19. PUMP 20. MOTOR 21. BASE PLATE 21. BASE PLATE 22. FITTINGS, ETC. 23. TOTAL WEIGHT 24. MOTOR 25. MATERIAL COMPONENT COST 26. SHOP MANPOWER COST 21. DESIGN USD 26. SHOP MANPOWER COST 21. DESIGN USD 26. SHOP MANPOWER COST 21. DESIGN USD 26. SHOP MANPOWER COST 20. MOTOR 21. DESIGN COST 20. MOTOR 22. MATERIAL 24. MOTOR 25. MATERIAL COMPONENT COST 20. USD 26. SHOP MANPOWER COST 20. USD					CS		
3. DESIGN PRESSURE 4. HEAD 5. ASA RATING 6. DRIVER POWER 7. DRIVER SPEED 8. DRIVER TYPE SYMBOL 9. PUMP EFFICIENCY SEAL DATA 10. SEAL TYPE 11. PRIMARY SEAL PIPE PLAN 12. SEAL PIPING MATERIAL 14. CAPACITY 15. FLUID DENSITY 16. FLUID VISCOSITY 17. RESULTING DESIGN VALUE 19. PUMP 18. CAPACITY*HEAD 20. MOTOR 21. BASE PLATE 22. FITTINGS, ETC. 23. TOTAL WEIGHT 24. MOTOR 25. MATERIAL COMPONENT COST 26. SHOP MANPOWER COST 150. 0 150		·- ·				120.0	DEG F
4. HEAD 150.0 150.0 FEET 5. ASA RATING 150 6. DRIVER POWER 40.00 HP 7. DRIVER SPEED 1800.0 RPM 8. DRIVER TYPE SYMBOL MOTOR 9. PUMP EFFICIENCY 82.00 PERCENT SEAL DATA 10. SEAL TYPE SNEED SNGL 11. PRIMARY SEAL PIPE PLAN 11 12. SEAL PIPING PIPE TYPE WELD 13. SEAL PIPING MATERIAL A 106 PROCESS DESIGN DATA 14. CAPACITY 791.0 GPM 15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD							
6. DRIVER POWER 7. DRIVER SPEED 8. DRIVER TYPE SYMBOL 9. PUMP EFFICIENCY 82.00 PERCENT SEAL DATA 10. SEAL TYPE 11. PRIMARY SEAL PIPE PLAN 11. PRIMARY SEAL PIPE WELD 13. SEAL PIPING MATERIAL PROCESS DESIGN DATA 14. CAPACITY 15. FLUID DENSITY 16. FLUID VISCOSITY 17. RESULTING DESIGN VALUE 18. CAPACITY*HEAD 18. CAPACITY*HEAD WEIGHT DATA 19. PUMP 20. MOTOR 21. BASE PLATE 22. FITTINGS, ETC. 23. TOTAL WEIGHT VENDOR COST DATA 24. MOTOR 25. MATERIAL COMPONENT COST 26. SHOP MANPOWER COST 180.00 RPM 180.00 RPM MOTOR 10.00 RPM MEICHT 10.00 RPM MOTOR 10.00 RPM MEICHT 10.00 RPM MEICHT 10.00 RPM MOTOR 10.00 RPM MEICHT	4.	HEAD		150.0	-	150.0	FEET
7. DRIVER SPEED 1800.0 RPM 8. DRIVER TYPE SYMBOL MOTOR 9. PUMP EFFICIENCY 82.00 PERCENT SEAL DATA 10. SEAL TYPE SNGL 11. PRIMARY SEAL PIPE PLAN 11 12. SEAL PIPING PIPE TYPE WELD 13. SEAL PIPING MATERIAL A 106 PROCESS DESIGN DATA 14. CAPACITY 791.0 791.0 GPM 15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 1700 USD	5.	ASA RATING			-	150	
8. DRIVER TYPE SYMBOL 9. PUMP EFFICIENCY 82.00 PERCENT SEAL DATA 10. SEAL TYPE 11. PRIMARY SEAL PIPE PLAN 11. 12. SEAL PIPING PIPE TYPE 13. SEAL PIPING MATERIAL PROCESS DESIGN DATA 14. CAPACITY 15. FLUID DENSITY 16. FLUID VISCOSITY 17. RESULTING DESIGN VALUE 18. CAPACITY*HEAD WEIGHT DATA 19. PUMP 20. MOTOR 21. BASE PLATE 21. BASE PLATE 22. FITTINGS, ETC. 23. TOTAL WEIGHT VENDOR COST DATA 24. MOTOR 25. MATERIAL COMPONENT COST 26. SHOP MANPOWER COST NOTE SNGL 11 11 11 12 SNGL 11 11 11 11 11 11 11 11 11 11 11 11 11	6.	DRIVER POWER				40.00	HP
9. PUMP EFFICIENCY 82.00 PERCENT SEAL DATA 10. SEAL TYPE SNGL 11. PRIMARY SEAL PIPE PLAN 11 12. SEAL PIPING PIPE TYPE WELD 13. SEAL PIPING MATERIAL A 106 PROCESS DESIGN DATA 14. CAPACITY 791.0 791.0 GPM 15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	7.	DRIVER SPEED			18	300.0	RPM
SEAL DATA	8.	DRIVER TYPE SYMBOL			MOTOR		
10. SEAL TYPE SNGL 11. PRIMARY SEAL PIPE PLAN 11 12. SEAL PIPING PIPE TYPE WELD 13. SEAL PIPING MATERIAL A 106 PROCESS DESIGN DATA 14. CAPACITY 791.0 791.0 GPM 15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	9.	PUMP EFFICIENCY				82.00	PERCENT
11. PRIMARY SEAL PIPE PLAN 12. SEAL PIPING PIPE TYPE 13. SEAL PIPING MATERIAL PROCESS DESIGN DATA 14. CAPACITY 791.0 791.0 62.43 PCF 16. FLUID DENSITY 10.00 CPOISE 17. RESULTING DESIGN VALUE 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 20. MOTOR 21. BASE PLATE 21. BASE PLATE 22. FITTINGS, ETC. 23. TOTAL WEIGHT 24. MOTOR 24. MOTOR 25. MATERIAL COMPONENT COST 26. SHOP MANPOWER COST 20. MATERIAL COMPONENT COST 20. MATERIAL COMPONENT COST 20. MOTOR 21. MATERIAL COMPONENT COST 20. MOTOR 20. MOTO	SEAL DA	ATA					
12. SEAL PIPING PIPE TYPE WELD 13. SEAL PIPING MATERIAL A 106 PROCESS DESIGN DATA 14. CAPACITY 791.0 791.0 GPM 15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	10.	SEAL TYPE			SNO	3L	
PROCESS DESIGN DATA	11.	PRIMARY SEAL PIPE PLAN	N			11	
PROCESS DESIGN DATA	12.	SEAL PIPING PIPE TYPE			WEI	LD	
14. CAPACITY 791.0 791.0 GPM 15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD					A I	106	
15. FLUID DENSITY 62.43 PCF 16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 30 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	PROCESS	S DESIGN DATA					
16. FLUID VISCOSITY 1.000 CPOISE 17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 1700 USD 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	14.	CAPACITY		791.0	•	791.0	GPM
17. RESULTING DESIGN VALUE 0.0506 HP/GPM 18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA	15.	FLUID DENSITY				62.43	PCF
18. CAPACITY*HEAD 118650 GPM -FT WEIGHT DATA 9. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	16.	FLUID VISCOSITY				1.000	CPOISE
WEIGHT DATA 19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	17.	RESULTING DESIGN VALUE	E			0.0506	HP/GPM
19. PUMP 530 LBS 20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	18.	CAPACITY*HEAD			1186	550	GPM -FT
20. MOTOR 450 LBS 21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	WEIGHT	DATA					
21. BASE PLATE 110 LBS 22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 1700 USD 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	19.	PUMP			į	530	LBS
22. FITTINGS, ETC. 100 LBS 23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 1700 USD 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	20.	MOTOR			4	450	LBS
23. TOTAL WEIGHT 1200 LBS VENDOR COST DATA 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	21.	BASE PLATE			-	110	LBS
VENDOR COST DATA 1700 USD 24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	22.	FITTINGS, ETC.			-	L00	LBS
24. MOTOR 1700 USD 25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	23.	TOTAL WEIGHT			12	200	LBS
25. MATERIAL COMPONENT COST 2050 USD 26. SHOP MANPOWER COST 2012 USD	VENDOR	COST DATA					
26. SHOP MANPOWER COST 2012 USD	24.	MOTOR			1	700	USD
	25.	MATERIAL COMPONENT CO	ST		20	050	USD
27. SHOP OVERHEAD 2052 USD	26.	SHOP MANPOWER COST			20	012	USD
	27.	SHOP OVERHEAD			20	052	USD
28. GENERAL OFFICE OVERHEAD 1329 USD	28.	GENERAL OFFICE OVERHER	AD		13	329	USD
29. PROFIT 1457 USD	29.	PROFIT			14	157	USD
30. TOTAL COST 10600 USD	30.	TOTAL COST			106	500	USD
31. RESULTING UNIT COST 8.833 USD/LBS	31.	RESULTING UNIT COST				8.833	USD/LBS
32. RESULTING UNIT COST 13.40 USD/GPM						13.40	USD/GPM
33. RESULTING UNIT COST 265.0 USD/HP	33.	RESULTING UNIT COST			2	265.0	USD/HP

	L/M
--	-----

	:	MATERIAL-	:***	M A N P	O W E R	***:]	RATIO	:
	:	USD	:	USD	MANHOUR	RS :U	SD/USD	:
EQUIPMENT&SETTING	:	10600.	:	856.	46	:	0.081	:
PIPING	:	12276.	:	4521.	244	:	0.368	:
CIVIL	:	328.	:	797.	51	:	2.427	:
STRUCTURAL STEEL	:	0.	:	0.	0	:	0.000	:
INSTRUMENTATION	:	5963.	:	1466.	76	:	0.246	:
ELECTRICAL	:	427.	:	697.	35	:	1.631	:
INSULATION	:	0.	:	0.	0	:	0.000	:
PAINT	:	472.	:	770.	56	:	1.632	:
SUBTOTAL	:	30066.	:	9107.	508	:	0.303	:
INSTALLED DIRECT	COST	3920	00.	INST'L	COST/PE	RATIO	3.698	}

-IPE Version: 4.0
Estimate Base: 1st Quarter 1997 (4.0)
June 30, 1997
Run Date: 16NOV98-11:53:19

Equipment Num :: S-600

Eqipment Name :: Bar Screen

Associated PFD :: PFD-P100-A602

Equipment Type :: SCREEN

Equipment Category :: SEPARATOR

Equipment Description:: 0.5" Mech. cleaned Screen

Equipment Description:: 0.5" Mech.

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 612

Base Cost :: 117818.00

Cost Basis :: CH2MHL91

Cost Year :: 1991

Base for Scaling :: 188129.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1 2000

Base Units :: KG/HR Install. Factor :: 1.2000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.3000 Scale Factor Basis :: ASSUMED

Material of Const :: CS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WS600
Utility Type :: POWER
Date Modified :: 01/13/99
Notes :: Expected Power F

Notes :: Expected Power Req: .7 kW Eq. No. S-600
Eq. Name Bar Screen
Associated PFD A602

Stream for Design 612 Stream Description Eq. Inlet

Flow Rate (total) 188129 Kg/hr R9809G

Average Density 0.945 Liquid Flowrate 876 gpm

Average Flow 73 gpm Ch2MHill Report 1991

Cost \$ 55,900 1991

Power Requirement 1 hp Estimated for Mechanical Cleaners

0.7 kW

Cost Estimation

Scaling Exponent 0.3 Assumed Very Low

Scaled Cost **\$ 117,818** Year 1991

Scaling Stream 612
Scaling Rate 188129
Scaling Units Kg/hr

Full Fuel Cycle Analysis of Biomass to Ethanol: Wastewater Treatment System Performance

> By CH2M HILL

December 10, 1991

Submitted to National Renewable Energy Laboratory

DESIGN SUMMARY

CASE 3 SOUTHEAST, 2010

Bar Screens

5-600

Number: Two

Type: Mechanically Cleaned

Bar Spacing: 1/2 inch

Equalization Tank

Number: One

Type: Above grade, welded steel

Volume: 225,000 gal

Size: 45 ft diam, 20 ft SWD

Hydraulic Retention Time: 24 hours

Mixers: 3, side entry, 4 hp (based on 30 hp/mg)

Primary Heat Exchanger Influent Pump

Number: Two (one redundant)

Type: Centrifugal, variable speed drive Capacity: 400 gpm at 15 ft total head

Primary Heat Exchanger

Number: One

Type: Shell and tube type, process water in tube

Surface Area: 131 sq ft

Temperature Reduction: 142 degrees F to 131 degrees F

Cooling Water Required: 46.5 gpm

Nutrient Feed System

Number: One

Type: Dry or liquid

Capacity: 7,500 lb/d urea and 3,000 lb triple super phosphate

Anaerobic Reactor

Number: Five

Type: Above grade, welded steel with cover

FLOW	22						86						-						160						
TOTAL	38776	1235	93477	25797	1352	7464	46881	0	140934	64981	0	0	320	0	0	0	0	٥	85867	584	118532	46755	617	3282	
CELL	2		195				0		0				0		0				KO		88				
AL YCEROL	847		28355				•		0				•		•				847		12943				
AYPSUM (INSOL) CELLULAS GLYCEROL	15		700	165	-		0		0	0			0		0	0			5		319	75			
GYPSUM (INSOL) C	7	192			108		٥	0			0		0	c			•		7	88			49		
GYPSUM (SOL)	81				1245	2223	0				٥	٥	•				0	0	8				568	1015	
FURFURAL	0		0	0			3627		140934	64981			•		0	•			3627		75865	34980			
HMF	52		1146	628			•		٥	0			0		0	0			25		523	241			
XYLOSE	139		4081				0		0				0		0				139		1863				
CRUDE	162		7557	1778			•		0	0			0		0	0			162		3448	812			
LIGNIN	38	1043					0	0					0	0					8	478					
HS.	 <u>6</u>					5241	0					0	0					٥	181					2267	
SOLUBLE WATER SOLIDS	759		51443	23326			0		0	0			0		0	0			759		23481	10647			
WATER	36507						43054						320						79981						
	LB/HR	TSS,mg/l	COD,mg/l	BOD,mg/f	SO4,mg/l	TDS,mg/l	LB/HR	TSS,mg/l	COD,mg/l	BoD,mg/I	SO4,mg/l	TDS,mg/I	LB/HH	TSS,mg/l	COD,mg/I	BOD,mg/l	SO4,mg/l	TDS,mg/l	LB/HB	TSS,mg/l	COD,mg/l	BOD,mg/l	SO4,mg/l	TDS,mg/l	
CASE 3: SOUTHEAST, 2010	STFM.NO.1	PROCESS WATER TO	WASTE TREATMENT				STHM.NO.2	OFFGAS FROM	BLOWDOWN TANK				STRM.NO.3	WASTEWATER	FROM CIP/CS				STRM.NO.4	STREAM TO	ANAEROBIC DIGESTION				

FILE: SERI

MASTEMATER TREATMENT FOR ETHANOL FACILITY
PROJECT NO: DEN32922.AO
PREPARED BY: E.R.MEYER

WASTEWATER TREATMENT FOR ETHANOL FACILITY

DESCRIPTION	QUANT	UNIT	\$/UNIT	TOTAL COST	REFERENCE
CASE 3		******			***************************************
	•				
GENERAL REQUIREMENTS:					
Semeral Requirements	á.00 2		\$15,315,257	\$918,715	
SITEMORK:					
Clear & Grub	7	ACRES	\$2,000.00	\$18,000	
Effluent Storage Lagoon (18 Acres):			,	•	
Esbanksent	56,987	CY	\$10.00	\$669.867	91 MEANS 022-292-0100
HPDE Liner (20 mil)	104,564		\$2.50		11 11 11 11 11 11 11 11 11 11 11 11 11
CLARIFIER STRUCTURE (20°0, 15° SWD):					
Earthwork:					
Excavation	1,068	CY	\$3.00	\$3,203	
Structural Backfill	23		\$10.00	\$233	
Backfill	897	CY	\$2.00	\$1,613	
Concrete:				,	
12° Slab on Grade	23	CY	\$200.00	\$4,652	
12° Walls	79	CY	\$400.00	\$31,633	
Metals:	1	LS	\$5,000.00	\$5,000	
AERATION TANKS (40'X150'X17'H, ABOVE GRADE):	4 {	ΕÁ			
Coacrete:					
12° Slab on Brade	889 8	Y.	\$200.00	\$177,778	
12* Walls	951 (, Y	\$400.00	\$380,593	
ārials:	i l	.3	15,000.00	\$5,000	
RUILDINGS:					
Office/Lab	2,100 8	F	\$100.00	\$210,000	
Preliminary Treatment Building	900 9			\$67,500	
Pump Building	1,200 S	F		\$90,000	
Beit Filter Press Building	2,000 8	F		\$150,000	5-600
PUIPMENT			55,900		3.000
Bar Screens	1 E	A	\$55,900.00	\$55,900	
Equalization Tank (Steel, 45'D, 20' SWD, 225,000 gal)	1 E		\$126,000.00	\$126,000	91 MEANS 132-051-1900 # 1.2
Equalization Tank Mixers (3.2 HP)	3 E		\$9,360.00	\$28,080	
Primary Heat Exchanger Influent Pump (400 opm)	2 E		\$5,590.00	\$11,180	

Equipment Num :: S-601

Eqipment Name :: Beer Column Bottoms Centrifuge

Associated PFD :: PFD-P100-A601

Equipment Type :: CENTRIFUGE Equipment Category :: S/L SEPARATOR

Equipment Description:: 36" X 12", 550 HP EACH

Equipment Description:: 36" X 12"

Number Required :: 3

Number Spares :: 0

Scaling Stream :: CENTFLOW

Base Cost :: 659550.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 404.000

Base Type :: FLOW

Base Units :: GPM Base Units :: GPM Install. Factor :: 1.2000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.6000 Scale Factor Basis :: GARRETT

Material of Const :: 316SS
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WS601
Utility Type :: POWER
Date Modified :: 01/13/99

:: Expected total Power Req: 993 kW. Number of units Notes

and capacity of each unit determined by Aspen.

Eq. No. S-601

Eq. Name Beer Columns Bottoms Centrifuge

Associated PFD A601

Stream for Design 525
Stream Description Centrifuge Inlet

Flow Rate (total) 278645 Kg/hr R9809G Flow Rate (solids) 31766 Kg/hr R9809G

Average Density

Frac Solids

Slurry Flowrate

Solids Flowrate

1.013

0.11

1211 gpm

34.9 ton/hr

Dorr Oliver \$ 750,000

500 gpm capacity

Bird \$ 750,000

400 gpm largest Unit

Power Requirement 550 hp per 500 gpm, per Merrick attached

Total Power Requirement 1332 hp 993 kW

Use Dorr Oliver

Number of Units 3

Capacity of Each Unit 404 gpm

92882 Kg/hr

Scaling Factor 0.60

Scaled Cost (Dorr Oliver) \$ 659,550

Scaling Stream CENTFLOW
Scaling Rate 404
Scaling Units GPM

Integer Number Numrcent Calculated by ASPEN, max 500 gpm

Mail : P.O. Box 22026/ Denver, CO / 80222 / USA Delivery: 2450 S. Peoria St. / Aurora, CO / 80014

Phone: 303-751-0741 / Fax: 303-751-2581

FAX

Date:

11/17/98 8:04 AM

To:

Bob Wooley

Fax Number: 303-384-6877

Voice Number:

From:

Company:

Dick Voiles

Voice Number:

303-751-0741

Project Number:

Number of Sheets: (including this sheet)

I'm sorry the attached was not in the estimate backup volume. We are putting it in now.

We used the Dorr-Oliver quote for the Beer Col. Btms. Centrifuge. We feel that Bird Machine and Dorr-Oliver are very well established names in centrifugation and that their prices essentially checked each other. Dorr-Oliver had a slightly larger machine - making it a better fit and cheaper.

For the belt filter press (M-614) we used Joe Ruocco's estimate. However we did solicit a price from Compositech to verify Joe. The Compositech stuff is attached.

Jim Kassian cc:

Jim Sharpe Fran Ferraro

MERRICK ARCHITECTS & ENGINEERS

Merrick & Company

Mail: P.O. Box 22026/ Denver, CO / 80222 / USA Delivery: 2450 S. Peoria St. / Aurora, CO / 80014 Phone: 303-751-0741 / Fax: 303-751-2581

RECORD OF TELEPHONE CONVERSATION

DATE:

8/21/98

PROJ. NO.: 19013104

FROM:

Ed Sweeny

COMPANY: Dorr-Oliver

LOCATION:

PHONE NO.: 203-838-6120

TO:

Ron Gould

COMPANY: Merrick

LOCATION:

PHONE NO.:

SUBJECT:

Beer Column Bottoms Centrifuge

Required ID

36"

Length BHP 12' (4:1)

400 bowl

150 scroll 550 total

316 SS construction

Will need 3 each of 500 gpm model decanters to handle the approximate 1400 gpm total flow.

Cost is \$750,000 per machine.

Baker Process

Contact Information

Baker Pr

Bird Machine Co. Home Page

Products

Please contact a Bird Machine Company a Representative or Service Center nearest you or at the headquarters address listed below if you need additional assistance.

BIRD Machine Company, Inc.

100 Neponset Street South Walpole, MA 02071-9103 Telephone: 508-668-0400 FAX: 508-668-6855

Support Services

Contact Information

Last modified on: 13 Aug 1998 by Senlin Zhang, Baker Process senlin.zhang@bakerhughes.com

FUNECUAL with John Prysi in Torence, CA, at (310)373-7622, and Ron Gould on 08.25-98:

- (1) He is quite familiar with NREL's project. He did some of the equipment work for Anceo's / Stone; Webster's 5WAN project, which may have generated process; test data used in This project. He also knows From Ferrero.
- (2) Their largest contribuse is a Model *6400:

Capacity = 400 gallmin. BOWI DIAMETER = 44"

Bowl Length = 132"

Motor = 300 HP

Ma11 = 31655

Centifyed Force = 1000 G's

Cost = \$750,000 /each

(3) For 1400 gpm, we will need & units; cost = 4 (\$7502) = 3,00

- (4) II more than 1000 his are needed (50y 2000 Gis), then we will have to go to more numbers of smeller units to handle it. This will increase costs, as expected.
- 5) I also asked about pressure leaving the countribuse. He said that the liquid straom exits through a series of bottles and growity feeds into a tank (escationly of atm.). We then would peop liquids out of the tank

MERRICK ARCHITECTS & ENGINEERS

Merrick & Company

Mail: P.O. Box 22026/ Denver, CO / 80222 / USA Delivery: 2450 S. Peoria St. / Aurora, CO / 80014

Phone: 303-751-0741 / Fax: 303-751-2581

RECORD OF TELEPHONE CONVERSATION

DATE:

09/10/98

PROJ. NO.: 19013104

FROM:

Roger Schultz

COMPANY: Ro-Caam

LOCATION: Denver, CO

PHONE NO.: (303)470-0770

TO:

Ron Gould

COMPANY: Merrick Company

LOCATION: Aurora, CO

PHONE NO.: (303)751-0741

SUBJECT:

NREL Softwood Project - Centrifuge Price Estimate

Roger called to provide pricing information for the beer column bottoms centrifuge for this project (S-601A/B). Based on solids and liquid rates of 40 ton/hr and 1,400 gpm, respectively, he offered the following:

OPTION 1: A single centrifuge, Model #906, good for 1,200 gpm and at a cost of \$1,200,000.

OPTION 2: Two (2) centrifuges, Model # 706, each good for 500 to 600 gpm and at a unit cost of \$650,000 (\$1,300,000 total for two units).

cc:

Dick Voiles

Equipment Num :: S-614

Eqipment Name :: Belt Filter Press

Associated PFD :: PFD-P100-A603

Equipment Type :: FILTER-PRESS

Equipment Category :: S/L SEPARATOR Equipment Description:: BELT THICKNESS

Equipment Description:: BELT THICK

Number Required :: 1

Number Spares :: 0

Scaling Stream :: AEROBCOO

Base Cost :: 650223.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 438.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 18000 Base Units :: KG/HR Install. Factor :: 1.8000 Install. Factor Basis:: VENDOR Scale Factor Exponent:: 0.7200 Scale Factor Basis :: VENDOR

Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WM614
Utility Type :: POWER
Date Modified :: 01/13/99
Notes :: Expected Power Req. 22 kW.

Eq. No. S-614

Eq. Name Aerobic Sludge Belt Filter Press

Associated PFD A603

Stream for Design 618
Stream Description Reactor Inlet

 Flow Rate
 185782 Kg/hr
 R9809G

 Liquid Density
 0.984 g/cc
 R9809G

 Frac Solids
 0
 R9809G

 Flowrate
 831.1 gpm

 Flowrate
 1,196,734 gal/day

 Flowrate
 188755 L/hr

 COD Concentration
 2323 mg/L

COD Loading 438 Kg/hr R9809G (See Conversion below)

Phoenix Bio-Systems, Inc. Merrick Appendix

F "Case 1",

COD Concentration 334 mg/L

Flow 766 gpm COD Loading 58 Kg/hr

Cost Estimation Unit Piping Totals	\$ 42	0,000 \$ 2,000 \$	nstallation \$ 42,000.00 \$ 67,000.00 \$ 109,000.00	Phoenix Bio-Systems, Inc. Merrick Appendix F "Case 1",
Prorated Additional Piping				
				Phoenix Bio-Systems, Inc. Merrick Appendix
Total Cost of Option	\$3,73	37,350		F "Case 1",
Overhead Portion	\$72	25,000		Design Engineering Fee + Site Preparation
Project Cost Less Overhead	\$3,01	2,350		
Overall Piping & Installation	\$37	1,600		Controls+Temp Control+Piping
Overall Piping & Inst %	1:	2.34%		, , ,
Installation Cost Above	\$10	9,000		Per above, extra piping and inst. Prorated
Additional Prorated Installati		32,197		
Total Installation Cost	•	1,197		
Installation Factor	•	1.93		

COD Concentration Flow COD Loading	520 mg/L 1105 gpm 131 Kg/hr	Phoenix Bio-Systems, Inc. Merrick Appendix F "Case 2",
Cost Estimation Unit Totals	Purchase Installation \$ 210,000 \$ 65,000.00 \$ 62,000 \$ 78,000.00 \$ 272,000 \$ 143,000.00	
Prorated Additional Piping Total Cost of Option Overhead Portion Project Cost Less Overhead	\$6,013,805 \$1,165,000 \$4,848,805	Phoenix Bio-Systems, Inc. Merrick Appendix F "Case 2", Design Engineering Fee + Site Preparation
Overall Piping & Installation Overall Piping & Inst %	\$518,100 10.69%	Controls+Temp Control+Piping
Installation Cost Above Additional Prorated Installat Total Installation Cost Installation Factor	\$143,000 i \$44,343 \$187,343 1.69	Per above, extra piping and inst. Prorated
Calculated Scaling Factor Average Installation Fact.	0.72 1.8	Scaled on COD (related to sludge flow)
Scaled Cost	\$ 650,223	Scaled on COD
Power Requirement	30 hp 22.4 kW	See Compositech Quote Attached
Scaling Stream Scaling Rate Scaling Units	AEROBCOD 438 Kg/hr	ASPEN Calculated Anerobic Inlet COD

	Kg/hr	COD Kg/hr I	Per R9809G
Mass Flow KG/HR	J	J	
Glucose	0.00	0	
Xylose	0.00	1.55434E-08	
Unknown	0.00	0	
Colsids	0.00	0	
Ethanol	3.25	6.78210016	
Arabinose	0.00	0	
Galactose	0.00	0	
Mannose	0.00	0	
Glucose Oligomers	0.00	0	
Cellibiose	0.00	0	
Xylose Oligomers	0.00	0	
Mannose Oligomers	0.00	0	
Galactose Oligomers	0.00	0	
Arabinose Oligomers	0.00	0	
Xylitol	0.00	0	
Furfural	54.04	90.2384834	
HMF	18.21	27.6783336	
Methane	2.49	9.95074	
Lactic Acid	0.05	0.056598506	
Acetic Acid	21.11	22.5878391	
Glycerol	0.00	0.000692483	
Succinic Acid	0.00	5.35041E-05	
Denaturant	0.00	0	
Oil	0.00	6.91765E-06	
Acetate Oligomers	0.00	0	
NH4Acet	245.95	281.1238218	
	345.093	438.4186695 I	Kg/hr of COD

	Kg COD/Kg
Glucose	1.07 Per Merrick WWT Report 11/98
Xylose	1.07
Unknown	1.07
Colsids	0.71
Ethanol	2.09
Arabinose	1.07
Galactose	1.07
Mannose	1.07
Glucose Oligomers	1.07
Cellibiose	1.07
Xylose Oligomers	1.07
Mannose Oligomers	1.07
Gaactose Oligomers	1.07
Arabinose Oligomers	1.07
Xylitol	1.22
Furfural	1.67
HMF	1.52
Methane	4
Lactic Acid	1.07

Acetic Acid	1.07
Glycerol	1.22
Succinic Acid	0.95
Denaturant	3.52
Oil	2.89
Acetate Oligomers	1.07
NH4Acet	1.143

NREL

CLIENT: PHONE/FAX: PROJECT NUMBER:

DATE:

TYPE: LOAD RATE: COD: Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 4,173 mg/l and 334 mg/l 766 gpm

FLOW:

ITEM	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals
Treatability						
Laboratory Analysis Preliminary Design						
Premimary Design						\$0.00
Equalization						
Equalization Dimensions	36'd x 44'h AOS SI SI					
Capacity (gal)	330000 gal	1	325,000.00	86,000.00	411,000.00	
						\$411,000.00
Main Reactor						
Dimensions	24'd x 60'h AOS	2				
Capacity (gal)	385,000 gal ∕	1	350,000.00	95,000.00	445,000.00	
Distribution Manifold	ICM s/s	8	4,950.00	10,500.00	50,100.00	
Overflow collection system	PVC	2	3,500.00	7,500.00	14,500.00	
Separator	10 x 12 Custom	2	24,500.00	17,500.00	66,500.00	
Sample Cocks	1" PVC	24	50.00	1,200.00	2,400.00	
Packing	TriPack PP	2600	12.00	2,500.00	33,700.00	
Insulation	9000 ft2	9 05 0	7.00		63,350.00	
						\$675,550.00
Decarbonator						
Capacity	3,000 gal	1	14,500.00	17,500.00	32,000.00	
Dimensions	6'd × 18'h				0.00	
Distributor	s/s	1	4,850.00	8,700.00	13,550.00	
Packing	TriPack 3.5 PP	400	12.00	1,500.00	6,300.00	
Demister		1	1,500.00	1,000.00	2,500 00	
Gratings	FRP	1	3,500.00	3,000.00	6,500.00	
Fan	3 hp	1	1,250.00	2,200.00	3,450.00	
Drain	•					
						\$64,300.00

5/18/98

Page 1

Section 1						
Controls						
Field Instruments	•	1	85,000.00	8,500.00	93,500.00	
Pressure Ind		12	250.00	750.00	3,750.00	
Temp Indicators		12	250.00	750.00	3,750 00	
pH Controller		4	2,500.00	2,000.00	12,000.00	
Biogas Meter		1	4,300.00	1,250 00	5,550.00	
Panel		1	3,800.00	2,250.00	6,050.00	
PLC		1	9,500.00	5,500.00	15,000.00	
Control computer		1	10,500.00	7,500.00	18,000.00	
Software		1	4,000.00	12,000.00	16,000.00	
						\$173,600 00
Temp Control		0	0.00	0 00	0.00	
Hot water heater		2	6,500.00	14,500.00	27,500.00	
Heat Exch		2	0,500.00	14,500.00	27,500.00	\$27,500.00
BioGas Scrubber						
Capacity	300 cf ,	1	6,500.00	7,600.00	14,100.00	
Grating	FRP	1	1,800.00	3,350.00	5,150.00	
Media	280	280	7.50	1,550.00	3,650.00	\$22,900.00
Piping						\$22,000.00
PVC		1	75,000.00	55,000.00	130,000.00	
Heat trace/Insulate		1	12,500.00	28,000.00	40,500.00	
Treat trace/modiate			,			\$170,500.00
Macronutrient Tank	5000	1	8,500.00	3,500.00	12,000.00	
Tank		1	1,500.00	3,800.00	5,300.00	
Nutrient Feed Pump Micronutrient Tank Tank Nutrient pump	ρ	ı	1,500.00	3,000.00	3,300.00	
Micronutrient Tank	,	4	4,500.00	3,500 00	8,000 00	
604 Tank	F 3000	1	1,500.00	3,800.00	5,300.00	
Nutrient pump Caustic Tank		1	1,300.00	3,800.00	5,300.00	
Caustic Dosing Pump	500 gpd	1	1,150.00	3,700.00	4,850.00	
Tank	5500 gal	1	9,500.00	17,500.00	27,000.00	
Iron Tank	200 gal	1	550.00	500.00	1,050.00	
/ Metering pump /	g	1	850.00	1,550.00	2,400.00	
Phosphate Tank	1000 gal	1	2,500.00	2,500.00	5,000.00	
Metering pump	50 gpd	1	850.00	1,550.00	2,400.00	
Cristonia bamb	3- ar-	•			•	\$73,300.00
			#31.403	11900		•

Page 2

Flare Burner Auto pilot,N-gas,air	150 CFM	1	8,500.00 4,500.00	4,000.00 3,500.00	12,500.00 8,000.00	\$20,500 00
System Feed Pump Cent	766 gpm, 40' TDH s/s	2	4,900.00	2,700.00	12,500.00	
System Recirc Pump Cent	1500 gpm 70' TDH s/s	2	8,000.00	4,500.00	20,500 00	\$20,500 00
:						
Aerobic Secondary						
Feed Pump	766 gpm 40' TDH s/s	2	4,900.00	3,500.00	13,300.00	
Aerated Lagoon	0.9 mgal	1		500,000.00	500,000.00	
Floating aerators	4x25 hp, 2 x 50 hp	6	25,000.00	22,000.00	172,000.00	
•						\$685,300.00
Clarifier	180,000 gai	1	155,000 00	115,000 00	270,000.00	
Sludge pumps	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	
Effluent pumps/wet wells	2x25hp cent	2	3,500.00	10,500.00	17,500 00	
Belt Thickener						\$301,400.00
Belt Thickener (6)		1	110,000.00	42,000.00	152,000.00	
Piping >	Yard	1	42,000.00	67,000.00	109,000.00	
Sludge holding Tanks/Load out		1	-45,000.0 0	-25,000.0 0	70,000.0 0	
,			152,000	109,000		\$ 331,000.0 0
Sand Filters				27927		
VortiSand Filters	0	0	0.00	0.00 130	-,927 _{0.00}	
Surge Tanks	0	0	0.00	0.00	0.00	
3						\$0.00
Chlorinator						
Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
Metering system		0	0.00	0.00	0.00	
Contact Tank	0	0	0.00	0.00	0.00	
C.T. Aerator	0	0	0.00	0.00	0.00	
						\$0.00

,14

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	250,000.00	250,000.00	
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Weather Protection		1		295,000 00	\$250,000 00
Power Outage Protection Buildings	Control Building	1		125,000.00	
Fencing MCC Site Electrical				55,000.00	
Subcontractors Permits and Fees Taxes				35,000.00	\$475,000.00
Insurance					\$35,000.00
TOTAL					\$3,737,350.00
Plus 12 % Contingency					\$4,185,832.00

CLIENT:

NREL

PHONE/FAX:

PROJECT NUMBER:

DATE:

5/18/98

TYPE: LOAD RATE:

Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 6510 mg/l & 520 mg/l 1105 gpm

COD:

FLOW:	1105 gpm

ITEM	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals
Treatability Laboratory Analysis						
Preliminary Design						
						\$0.00
Equalization						
Dimensions	roo ooo	4	450,000.00	100,000.00	550,000.00	
Capacity (gal)	500,000	1	450,000.00	100,000.00	330,000.00	\$550,000.00
Main Reactor						4 200,000.00
	26' d x 60'hAOS agua St	4				
Dimensions Capacity (gal)	950,000	1	750,000.00	175,000.00	925,000.00	
Distribution Manifold	ICM s/s	16	4,950.00	32,500.00	111,700.00	
Overflow collection system	PVC	4	15,500.00	22,000.00	84,000.00	
Separator	10 x 12 FRP Custom	4	28,000.00	38,700.00	150,700.00	
Sample Cocks	1" PVC	36	50.00	1,200.00	3,000.00	
Packing	TriPack PP	6370	12.00	2,500.00 _K	78,940.00	
Insulation		19600	7.00	0 00 8/7	,,,137,200.00	
			1,218,64	2,500.00 pro 271, 900 pro 159,265 pro 431	.6	\$1,490,540.00
Decarbonator				159,265 431	, a a a a a a a a a a a a a a a a a a a	1649305 135,25
Capacity	5,000 gal	1	22,500.00	27,500.00	50,000.00 0.00	
Dimensions	8'd x 18 s/s	1	7,590.00	9.800 00	17,390.00	
Distributor	TriPack 3.5 PP	700	12.00	1,500.00	9,900.00	
Packing Demister	THEACK 3.3 FF	1	2,500.00	1.000.00	3,500.00	
Gratings	FRP	i	4,500.00	3,000.00	7,500.00	
Fan	4 hp	i	1,250.00	2,200.00	3,450.00	
Drain		•			•	
			11740	95,000		\$91,740.00
			46,	4-1		•

Page 1

Controls						
Field Instruments		1	85,000.00	8,500.00	93,500.00	
Pressure Ind		18	250.00	750.00	5,250.00	
Temp Indicators		18	250.00	750.00	5,250.00	
pH Controller		6	2,500.00	2,000.00	17,000.00	
Biogas Meter		1	4,300.00	1,250.00	5,550.00	
Panel		1	3,800.00	2,250.00	6,050.00	
PLC		1	9,500.00	5,500.00	15,000.00	
Control computer		1	10,500.00	7,500.00	18,000.00	
Software		1	4,000.00	12,000.00	16,000.00	
						\$181,600 00*
Temp Control		0	0.00	0.00	0.00	
Hot water heater		0		12,500.00	37,500.00	
Heat Exch		2	12,500.00	12,500.00	37,300.00	\$37,500.00*
BioGas Scrubber						401,000.00
Capacity	800 cf	1	10,800.00	7,800.00	18,600 00	
Grating	FRP	1	2,200.00	4,550.00	6,750.00	
Media	650 CF	750	7.50	1,550.00	7,175 00	
McGra	000 01	, , ,		•		\$32,525.00
Piping						
PVC		1	125,000.00	97,000.00	222,000.00	
Heat trace/Insulate	•	1	32,000.00	45,000.00	77,000.00	\$299,000.00 ×
Macronutrient Tank						\$299 ₁ 000.00
Macronument rank Tank	5000	1	8,500.00	3,500.00	12,000.00	
Nutrient Feed Pump	5000	1	1,500.00	3,800.00	5,300.00	
Micronutrient Tank		•	1,000.00	0,000.00	0,722.22	
Tank	3000	1	4,500.00	3,500.00	8,000.00	
Nutrient pump		1	1,500.00	3,800.00	5,300.00	
Caustic Tank						
Caustic Dosing Pump	500 gpd	1	1,150.00	3,700.00	4,850.00	
Tank	5500 gal	1	9,500.00	17,500.00	27,000.00	
Iron Tank	200 gal	1	550.00	500 00	1,050.00	
Metering pump	5	1	850.00	1,550.00	2,400.00	
Phosphate Tank	1000 gal	1	2,500.00	2,500.00	5,000.00	
Metering pump	50 gpd	1	850.00	1,550.00	2,400.00	
	- Ji			11.000		\$73,300.00
			21400	41900		0.1.43
		D 0	シビ	4 7 78 43	_	81143
		Page 2	lo y	41900	3 / (81143 ACT. 2.58
				4 '	1N55 F	mc, 2,

	*** 1						
	Flare Burner Auto pilot,N-gas,air	600 CFM	1 1	10,500.00 6,500.00	4,000.00 3,500.00	14,500 00 10,000 00	\$24,500.00
	System Feed Pump	1200 gpm, 40' TDH s/s	2	6,500.00	4,600.00	17,600.00	
	Cent System Recirc Pump	1200 gpm, 40 1DH 3/3	2	0,000.00	1,000.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Cent	3000 gpm 70' TDH s/s	2	9,500.00	7,500.00	26,500.00	\$24,500.00
	4 - 4						
	Aerobic Secondary						
	Feed Pump	1100 gpm 40' TDH s/s	2	6,500.00	4,200.00	17,200.00	
T-608	Aerated Lagoon \(\begin{aligned} \textstyle	2.5 MM gal	1	100,000.00	750,000.00	850,000.00	
0	Floating aerators	8 x 50 hp	8	35,000.00	30,000.00	310,000.00	
	_						\$1,177,200 00
	Clarifier	275,000 gal	1	225,000.00	125,000.00	350,000.00	
	Sludge pumps	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	
	Effluent pumps/wet wells	2x25hp cent	2	3,500.00	10,500.00	17,500 00	*****
	Belt Thickener 5 614				25 222 22	0.75, 0.00, 0.0	\$381,400.00
	Belt Thickener 5		1	210,000.00	65,000.00	275,000 00	
614	Piping -	Yard	1	62,000.00	78,000.00	140,000.00	
	Studge holding Tanks/Load out		1	45,000.00	25,000:00 143000	70,000.00	\$4 85,000.00
				272,000	114405		\$400,0 00.00
	Sand Filters	0	0	0.00	0.00 1874	0.00	
	VortiSand Filters	0 0	0	0.00	0.00	0.00	
	Surge Tanks	U	U	0.00	0.00	0.00	\$0.00
	Chlorinator						•
	Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
	Metering system		0	0.00	0.00	0.00	
	Contact Tank	0	0	0.00	0.00	0.00	
	C.T. Aerator	0	0	0.00	0.00	0.00	
							\$0.00

Page 3

Design Engineering Fee Design Drawings	all	1	475,000.00	475,000.00	
Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative					\$475,000.00 ⁺
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up				475,000 00	
Weather Protection Power Outage Protection	Control Building	1		125,000.00	
Buildings Fencing MCC	Control Dunding	·		55,000.00	
Site Electrical Subcontractors					\$655,000.00
Permits and Fees Taxes				35,000.00	
Insurance					\$35,000.00 #
TOTAL					\$ 6,013,805.00
Plus 12 % Contingency		TOTAL LOSS OVHO PIPA INST	6,013,805 4,848,805 518,100		\$ <u>6,735,461.60</u>

Page 4

1

P.O.BOX 2673 2404 S. GRAND BLVD. (SUITE 215) PEARLAND, TEXAS 77581

PHONE: (281) 485-5033

FAX: (281) 485-4594

DATE: August 27, 1998

FROM: JERRY D. PHILEN

ATTN: Andy Siegfried

PHONE: 303-751-0741

Merrick

FAX: 303-368-1299

fax pages (total) 12

I apologize for not being able to spend more time on this for you. This should be helpful, I hope.

If you have any questions, I will be in the office most of the day on Friday !!

Best Regards,

Jerry Philen

M CAPACITY

ID:Compositech Inc.

FAX:

PAGE 2

OMPOSITECH

P.O Box 2673 Pearland, Texas 77581 281-485-5033 / Fax 281-485-4594 Aug. 27,1998 Proposal 98-0826 1

Prepared for

Merrick Engineers & Architects 2450 S.Peoria Street Aurora, Colorado 80222

Attn: Andy Siegfried

SUBJECT

Project Number: 19013104

Preliminary Budgetary Pricing for 2.0m Belt Filter Press

Submitted by:

Jerry D. Philen, Vice-President Compositech, Inc.

303 751 2581 TO 3033846877

P.07/08

08/27 '98 17:53

ID:Compositech Inc.

FAX:

PAGE

3

P.O Box 2673 Pearland, Texas 77581 281-485-5033 / Fax 281-485-4594

Aug. 27,1998 Proposal 98-0826

Based on the information supplied, please review the following per our discussions.

Budgetary Proposal

Compositech is pleased to submit this bid for the supply of goods and services for the referenced project: Project # 19013104

Specification Section -- Belt Filter Press

- 1. Scope of Supply (CANTILEVER TYPE) A. One (1) 2.0m Belt Filter Press, Compositech Model BPF S7-I consisting of:
 - 1. Main Structural Frame of ASTM A36 W6X40 beams, Hot Dip Galvanized per ASTM 123 (or equivalent).
 - 2. All rollers, with the exception of the first pressure roll are constructed of A-519 tubing with a wall thickness of 1/2". Rolls are rubber coated with 1/4" Buna-N, hardness of 85 shore A.
 - Dodge Bearings/Housing with minimum L 10 life of 100,000 hours. 3. (or equivalent)
 - 4. Filter belts, endless woven PES, as required for application.
 - Belt tracking system, proportional pneumatic system 5.
 - 6. Sprayco/Stamm shower system, 304 SS Header and Shower Box Enclosures.
 - 7. Chicane blades with lifting mechanism six (6) rows w/ 304ss hardware. Optional Distribution Screw substituted depending on density of material.
 - 8. Belt Drive System, SEW-EURODRIVE gearmotor, mechanical, 5:1 range 30 Hp.
 - 9. Belt Doctoring assembly with adjustable counter weights.
 - 10. Belt Tensioning System, pneumatic with 304ss thrust rods and mechanical rack and pinion interlock device.

ID:Compositech Inc.

FAX:

PAGE 4

P.O Box 2673 Pearland, Texas 77581 281-485-5033 / Fax 281-485-4594 Aug. 27,1998 Proposal 98-0826

- 11. Drip Trays, Pans, Sludge Inlet / Containment system and headbox of 304ss.
- 12. Gravity support grids, 304ss w/UHMW wear strips OPTIONAL: table rolls depending on density of material.
- 13. Inline Polymer mixing device, 316 ss./ or verticle type mixer.(optional)
- 14. Local control panel (LCP) Nema 4X FRP or equivalent.
- 15. Operations and Maintenance Manuals (3).

COMMERCIAL CONDITIONS

- 1) Price for above items provided under "Scope of Supply.
 - A. ONE (1) 2.0 Meter BPF \$7-1 . \$208,000.00 standard / manual operated controls

 (1) optional / complete system control panel . \$??
 - B. ESTIMATED PRICING for items listed below under Services provided by Purchaser (Items 6h) , . \$ 65,000.00
- 2) Pricing is for budgeting only
- 3) Payment Terms: 35% With Order

15% With Approved Drawings

40% Due at Ship Date

10% Upon Delivery (Net 30 Days) + Freight

- 4). Delivery: 18 -20 weeks after return of approved drawings.
- 5) Freight: F.O.B. Houston, Texas
- 6). Specifically Excluded Items from the "Scope of Supply" and Materials and Services Provided by Purchaser:
 - a. Local Taxes, Special fees and licenses.
 - b. Foundation Construction for any equipment proposed herein
 - c. Unloading and uncrating of the proposed equipment.
 - d. Installation labor for the proposed equipment.
 - e. All connecting piping to the proposed equipment.
 - f. All wiring between proposed equipment and control panel.
 - Storage costs associated with the proposed equipment after release from shipment to jobsite.
 - h. Polymer feed system, air compressor, washwater booster pump, sludge (slurry) pump, or conveying type equipment.

Equipment Num :: T-602

Eqipment Name :: Equalization Basin

Associated PFD :: PFD-P100-A602

Equipment Type :: FLAT-BTM-STORAGE

Equipment Category :: TANK

Equipment Description:: 377516 gal, Residence time 7.2 hr,

Equipment Description:: 377516 gal.

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 612

Base Cost :: 350800.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 188129.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1 4200

Base Units :: KG/HR Install. Factor :: 1.4200 Install. Factor Basis:: VENDOR Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT Material of Const :: CONCRETE
Date Modified :: 01/13/99

Eq. No. Eq. Name Associated PFD	T-602 Equalization Basin A602	
Stream for Design Stream Description Flow Rate Average Density	612 Tank Inlet 188129 Kg/hr 0.945 g/CC	R9809G R9809G
Flowrate Flowrate	876 gpm 52578 gph	Rooce
Residence Time Calculated Volume	7.2 hr 377,516 gal	Back calculated from Information below
Volume	330,000 gal	Phoenix Bio-Systems, Inc
Flowrate Vendor Equipment Cost Vendor Installation Cost	766 gpm \$ 325,000 \$ 86,000	Merrick Appendix F "Case 1 - Equalization" Per above
Prorated Additional Piping		Phoenix Bio-Systems, Inc. Merrick Appendix
Total Cost of Option	\$3,737,350	F "Case 2".
Overhead Portion Project Cost Less Overhead	\$760,000	Design Engineering Fee + Site Preparation
Overall Piping & Installation Overall Piping & Inst %	\$371,600 12.48%	Controls+Temp Control+Piping
Installation Cost Above Additional Prorated Installat Total Installation Cost Installation Factor	\$86,000 i· \$51,296 \$137,296 1.42	Per above, extra piping and inst. Prorated
Scaling Exp Cost	0.51 \$ 350,800	Garrett
Scaling Stream Scaling Rate Scaling Units	612 188129 Kg/hr	

CLIENT: PHONE/FAX: PROJECT NUMBER:

DATE:

5/18/98

TYPE: LOAD RATE: COD: FLOW:

Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 4,173 mg/l and 334 mg/l 766 gpm

NREL

	ITEM	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals
	Treatability						
	Laboratory Analysis						
	Preliminary Design						
							\$0.00
	Equalization Dimensions						
17	Dirnensions	36'd x 44'h AOS SI St					
12	Capacity (gal)	330000 gal	1	325,000.00	86,000.00	411,000.00	
					51,296 PI	14 inst	\$41-1-000-00-
	Main Reactor				\$137,296		* 462 Z96
	Dimensions	24'd x 60'h AOS	2				
	Capacity (gal)	385,000 gal ∕	1	350,000.00	95,000.00	445,000.00	
	Distribution Manifold	ICM s/s	8	4,950.00	10,500.00	50,100.00	
	Overflow collection system	PVC	2	3,500.00	7,500.00	14,500.00	
	Separator	10 x 12 Custom	2	24,500.00	17,500.00	66,500.00	
	Sample Cocks	1" PVC	24	50.00	1,200.00	2,400.00	
	Packing	TriPack PP	2600	12.00	2,500.00	33,700.00	
	Insulation	9000 ft2	9050	7.00		63,350.00	
							\$675,550.00
	Decarbonator		•				
	Capacity	3,000 gal	1	14,500.00	17,500.00	32,000.00	
	Dimensions	6'd x 18'h				0.00	
	Distributor	s/s	1	4,850.00	8,700.00	13,550.00	
	Packing	TriPack 3.5 PP	400	12.00	1,500.00	6,300.00	
	Demister		1	1,500.00	1,000.00	2,500.00	
	Gratings	FRP	1	3,500.00	3,000.00	6,500.00	
	Fan	3 hp	1	1,250.00	2,200.00	3,450.00	
	Drain	-		•	•		
							\$64,300.00

Page 1

Controls						
Field Instruments		1	85,000.00	8,500.00	93,500.00	
Pressure Ind		12	250.00	750.00	3,750.00	
Temp Indicators		12	250.00	750.00	3,750 00	
pH Controller		4	2,500.00	2,000.00	12,000.00	
Biogas Meter		1	4,300.00	1,250.00	5,550.00	
Panel		1	3,800.00	2,250.00	6,050.00	
PLC		1	9,500.00	5,500.00	15,000.00	
Control computer		1	10,500.00	7,500.00	18,000.00	
Soflware		1	4,000.00	12,000.00	16,000.00	
						\$173,600.00*
Temp Control Hot water heater		0	0.00	0.00	0.00	
Heat Exch		2	6.500.00	14,500.00	27,500.00	
TOUR EXON		_	'	·	·	\$27,500.00 *
BioGas Scrubber	300 cf	1	6,500.00	7,600.00	14,100.00	
Capacity	FRP	1	1,800.00	3,350.00	5,150.00	
Grating	280	280	7.50	1.550.00	3,650.00	
Media	280	200	7.30	1,330.00	3,030.00	\$22,900.00
Piping		4	75,000.00	55,000.00	130,000.00	
PVC		1	. ,	28.000.00	40,500.00	
Heat trace/Insulate		1	12,500.00	28,000.00	40,500.00	\$170,500.00 *
Macronutrient Tank						• () ()
Tank	5000	1	8,500.00	3,500.00	12,000.00	
Nutrient Feed Pump		1	1,500.00	3,800.00	5,300.00	
Micronutrient Tank Tank Nutrient pump			10			
/ Tank / No C	3000	1	4,500.00	3,500.00	8,000.00	
Nutrient pump		1	1,500.00	3,800.00	5,300.00	
Caustic Tank			6			
Caustic Dosing Pump	500 gpd	1	1,150.00	3,700.00	4,850.00	
Tank	5500 gal	1	9,500.00	17,500.00	27,000.00	
Iron Tank	200 gal	1	550.00	500.00	1,050.00	
/ Metering pump	•	1	850.00	1,550.00	2,400.00	
Phosphate Tank	1000 gal	1	2,500.00	2,500.00	5,000.00	
Metering pump	50 gpd	1	850.00	1,550.00	2,400.00	
<u></u>	υ,	-		·	-	\$73,300.00
		•	H31,400			

Page 2

Flare Bumer Auto pilot,N-gas,air	150 CFM	1 1	8,500.00 4,500.00	4,000.00 3,500.00	12,500.00 8,000.00	\$20,500 00
System Feed Pump Cent	766 gpm, 40' TDH s/s	2	4,900.00	2,700.00	12,500.00	
System Recirc Pump Cent	1500 gpm 70' TDH s/s	2	8,000.00	4,500.00	20,500.00	\$20,500.00
Aerobic Secondary						
Feed Pump	766 gpm 40' TDH s/s	2	4,900.00	3,500.00	13,300.00	
Aerated Lagoon	0.9 mgal	1		500,000.00	500,000.00	
Floating aerators	4x25 hp, 2 x 50 hp	6	25,000.00	22,000.00	172,000.00	
						\$685,300.00
Clarifier	180,000 gal	1	155,000.00	115,000.00	270,000.00	
Sludge pumps	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	
Effluent pumps/wet wells	2x25hp cent	2	3,500.00	10,500.00	17,500 00	**********
					160 000 00	\$301,400.00
Belt Thickener		1	110,000.00	42,000.00	152,000 00	
Piping	Yard	1	42,000.00	67,000.00	109,000.00	
Sludge holding Tanks/Load out		1	45,000.00	25,000.00	70,000.00	#004 00D 00
						\$331,000.00
Sand Filters			0.00	0.00	0.00	
VortiSand Filters	0	0	0.00	0.00	0.00	
Surge Tanks	0	U	0.00	0.00	0.00	\$0.00
Chlorinator						ψα.υυ
Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
Metering system	U	0	0.00	0.00	0.00	
Contact Tank	0	0	0.00	0.00	0.00	
C.T. Aerator	0	0	0.00	0.00	0.00	
O. I. Acialui	U	U	0.00	0.00	0.00	\$0.00
						₩0.00

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	250,000.00	250,000 00	\$250,000.00 /
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Weather Protection Power Outage Protection		1		295,000 00	V
Buildings	Control Building	1		125,000.00	
Fencing MCC				55,000.00	
Site Electrical					
Subcontractors Permits and Fees				35,000.00	\$475,000.00 +
Taxes Insurance					
					\$35,000.00 *
			,		
TOTAL					\$3,737,350.00
Plus 12 % Contingency	Less Ovho # Sub Z; DIP & INST % SUB	1,737,350 160,000 177,350 371600			\$4,185,832. <u>00</u>
	PIPA INST % 1013	12.3 70			

Page 4

Equipment Num :: T-606

Eqipment Name :: Anaerobic Digestor

Associated PFD :: PFD-P100-A602

Equipment Type :: FLAT-BTM-STORAGE

Equipment Category :: TANK

Equipment Description:: 810250 gal each, space velocity 12g COD/L/DAY

Number Required :: 4

Number Spares :: 0
Scaling Stream :: ANEROVOL
Base Cost :: 881081.00 Base Cost Cost Basis :: VENDOR
Cost Year :: 1998
Base for Scaling :: 810250.000
Base Type :: SIZE

Base Type
Base Units :: GAL Install. Factor :: 1.0400 Install. Factor Basis:: VENDOR Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT Material of Const :: EPOXY-LINED :: 01/13/99 Date Modified

:: Total volume calculated by Aspen. Number of Notes

> vessels determined using 950,000 gal as max per vessel. Actual volumn per vessel determined by

total volume/integer num of vessels

Eq. No. Eq. Name	T-606 Anerobic Digesto	or	
Associated PFD	A602		
Stream for Design	613		
Stream Description	Reactor Inlet		
Flow Rate	188129		R9809G
Liquid Density	0.985	g/cc	R9809G
Frac Solids	0		R9809G
Flowrate	840.7	gpm	
Flowrate	50442.6	gph	
Flowrate	190945.9	L/hr	
COD Concentration	32122.9	mg/L	
COD Loading	6133.7		R9809G (See Conversion below)
COD Loading	147209698		
Space Velocity		g/L/day	Merrick WWT Report 11/98
Volume	12267474.8	L	
Volume	3,241,000	gal	
Cost Estimation 1			
Volume	950,000	-	Merrick Appendix F "Case 2 - Main Reactor"
	Purchase	Installation	Phoenix Bio-Systems, Inc
Vessel Cost	\$750,000	\$175,000	
Distribution Manifold	\$79,200	\$32,500	
Overflow collection	\$62,000	\$22,000	
Separator	\$112,000	\$38,700	
Sample Cocks	\$1,800	\$1,200	
Packing	\$76,440	\$2,500	
Insulation	\$137,200		
Total	\$1,218,640	\$271,900	
I Prorated Additional Piping			
			Phoenix Bio-Systems, Inc. Merrick Appendix F
Total Cost of Option	\$6,013,805		"Case 2",
Overhead Portion	\$1,165,000		Design Engineering Fee + Site Preparation
Project Cost Less Overhead	\$4,848,805		
Overall Piping & Installation	\$518,100		Controls+Temp Control+Piping
Overall Piping & Inst %	10.69%		
Installation Cost Above	\$271,900		Per above, extra piping and inst. Prorated
Additional Prorated Installati	. ,		
Installation Cost	\$431,166		Per above, extra piping and inst. Prorated
Installation Factor	1.35		
			Round up to the nearest integer based on
Number of Vessels	4		950000 gal max
			Calculate volume based on integer number of
Volume of Each Vessel	810,250		vessels and the volume requirement.
Scaling Exponent	0.51		Garrett
Scaled Cost per Vessel	\$ 1,123,653		
Total Cost	\$ 4,494,611		4 Vessels

Cost Estimation 2			
Vessel Cost	\$	493,391	Chattanogga Quote
Volume		962,651 gal	
Other Equipment	\$	468,640	Merrick Appendix F "Case 2 - Main Reactor"
Total Cost	\$	962,031	
			Round up to the nearest integer based on
Number of Vessels		4	950000 gal max
			Calculate volume based on integer number of
Volume of Each Vessel		810,250	vessels and the volume requirement.
Scaling Exponent		0.51	Garrett
Scaled Cost per Vessel	\$	881,081	
Total Cost	\$	3,524,323	4 Vessels
Installation on Vessel		0	Field Errection Costs Included
			Installation Costs Listed in Merrick + 10.7%
Installation of Other Equip	m∈\$	157,412	proation of Piping and Inst.
Installation Factor		1.04	

Scaling Stream ANEROVOL Scaling Rate 810250 Scaling Units gal Total volume required per vessel, calculated by

ASPEN

Integer Number of Vessels calculated by ASPEN, based on max volume of 950,000 gal

Integer Number Required INUMANER per vessel

	Kg/hr	COD Kg/hr	Per R9809G
Mass Flow KG/HR			
Glucose	0.000	0	
Xylose	0.000	2.2205E-07	
Unknown	0.000	0	
Colsids	0.000	0	
Ethanol	46.858	97.9330319	
Arabinose	0.000	9.3396E-09	
Galactose	0.000	0	
Mannose	0.000	0	
Glucose Oligomers	0.000	0	
Cellibiose	0.000	0	
Xylose Oligomers	0.000	1.3258E-08	
Mannose Oligomers	0.000	0	
Galactose Oligomers	0.000	0	
Arabinose Oligomers	0.000	5.3941E-10	
Xylitol	0.000	0	
Furfural	777.247	1298.00182	
HMF	261.927	398.128736	
Methane	0.000	0	
Lactic Acid	0.756	0.80855053	
Acetic Acid	301.690		
Glycerol	0.001	0.00069248	
Succinic Acid	0.001	0.00076434	
Denaturant	0.000	0	

 Oil
 0.000
 9.8824E-05

 Acetate Oligomers
 0.000
 0

 NH4Acet
 3513.609
 4016.05509

6133.7374 Kg/hr of COD

Kg COD/Kg

	g ====:
Glucose	1.07 Per Merrick WWT Report 11/98
Xylose	1.07
Unknown	1.07
Colsids	0.71
Ethanol	2.09
Arabinose	1.07
Galactose	1.07
Mannose	1.07
Glucose Oligomers	1.07
Cellibiose	1.07
Xylose Oligomers	1.07
Mannose Oligomers	1.07
Gaactose Oligomers	1.07
Arabinose Oligomers	1.07
Xylitol	1.22
Furfural	1.67
HMF	1.52
Methane	4
Lactic Acid	1.07
Acetic Acid	1.07
Glycerol	1.22
Succinic Acid	0.95
Denaturant	3.52
Oil	2.89
Acetate Oligomers	1.07
NH4Acet	1.143

Wooley, Robert

From:

Dick.Voiles@merrick.com

Sent:

Tuesday, November 17, 1998 4:45 PM

To:

robert_wooley@nrel.gov; Fran.Ferraro@merrick.com; Jim.Sharpe@merrick.com;

James.Kassian@merrick.com; Dick.Voiles@merrick.com

Subject:

Anaerobic digester reactor materials

Joe Ruocco says the reactors for all cases will be AO Smith, bolt-together, epoxy lined, carbon steel. These tanks are "cheap, easy and quick" and they are technically good for the service.

Piping can be schedule 80 PVC.

The separator which is an internal is FRP.

Agitator shaft/blades are stainless.

CLIENT:

PHONE/FAX: PROJECT NUMBER:

DATE:

TYPE: LOAD RATE: COD: FLOW:

5/18/98

Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 6510 mg/l & 520 mg/l 1105 gpm

NREL

ITEM	Description	Qty	Unit Cost	Installation	Q x UC + I	Totals
Treatability Laboratory Analysis Preliminary Design						£0.00
				•		\$0.00
Equalization						
Dimensions	500.000	1	450,000.00	100,000.00	550,000.00	
Capacity (gal)	500,000	ı	450,000.00	100,000.00	330,000.00	\$550,000.00
Main Depater						,
Main Reactor Dimensions	26' d x 60'hAOS aqua St	4				
Capacity (gal)	950.000	1	750,000.00	175,000.00	925,000.00	
Distribution Manifold	ICM s/s	16	4,950.00	32,500.00	111,700.00	
Overflow collection system	PVC	4	15,500.00	22,000.00	84,000.00	
Separator 1606	10 x 12 FRP Custom	4	28,000.00	38,700.00	150,700.00	
Sample Cocks	1" PVC	36	50.00	1,200.00	3,000.00	
Packing	TriPack PP	6370	12.00	2,500.00	78,940.00	
Insulation		19600	7.00	3 000	200.00 /137	
			1,218,64	371, 90 6 by	78,940.00 78,940.00 7,65 7,65	\$1,490,540.00
Decarbonator				159,200 43	, 165	1649305 135,25
Capacity	5,000 gal	1	22,500.00	27,500.00	50,000.00	
Dimensions	8'd x 18				0.00	
Distributor	s/s	1	7,590.00	9,800 00	17,390.00	
Packing	TriPack 3.5 PP	700	12.00	1,500.00	9,900.00	
Demister		1	2,500.00	1,000.00	3,500 00 7,500.00	
Gratings	FRP	1	4,500.00	3,000.00	3,450.00	
Fan	4 hp	1	1,250.00	2,200.00	3,430.00	
Drain			10	95,000		\$91,740.00
			46,740	45,7		,

Page 1

.60⁶

Controls						
Field Instruments		1	85,000 00	8,500.00	93,500.00	
Pressure Ind		18	250.00	750.00	5,250.00	
Temp Indicators		18	250.00	750 00	5,250.00	
pH Controller		6	2,500.00	2,000.00	17,000.00	
Biogas Meter		1	4,300 00	1,250.00	5,550.00	
Panel		1	3,800.00	2,250.00	6,050.00	
PLC		1	9,500.00	5,500.00	15,000.00	
Control computer		1	10,500.00	7,500.00	18,000.00	
Software		1	4,000.00	12,000.00	16,000.00	
:				,		\$181,600.00*
Temp Control		•	0.00	0.00	0 00	
Hot water heater		0	0.00		37,500.00	
Heat Exch		2	12,500.00	12,500.00	37,500.00	\$37,500.00 *
						φ37,300.00
BioGas Scrubber	000 -4	1	10.800.00	7,800.00	18,600 00	
Capacity	800 cf	1	2,200.00	4,550.00	6,750.00	
Grating	FRP	750	7.50	1,550.00	7,175.00	
Media	650 CF	750	7.50	1,330.00	7,175.00	\$32,525.00
Piping						
PVC		1	125,000.00	97,000.00	222,000.00	
Heat trace/Insulate		1	32,000.00	45,000.00	77,000.00	*****
•						\$299,000.00 ×
Macronutrient Tank	5000	1	8,500.00	3,500.00	12,000.00	
Tank	5000	1	1,500.00	3,800.00	5,300.00	
Nutrient Feed Pump		•	1,300.00	3,000.00	0,000.00	
Micronutrient Tank	2000	1	4,500.00	3,500.00	8,000.00	
Tank	3000	. 1	1,500.00	3,800.00	5,300.00	
Nutrient pump		•	1,500.00	3,000.00	3,300.00	
Caustic Tank	500 4	4	1,150.00	3,700.00	4,850.00	
Caustic Dosing Pump	500 gpd	1	9,500.00	17,500.00	27,000.00	
Tank	5500 gal	<u> </u>	550.00	500 00	1,050.00	
Iron Tank	200 gal		850.00	1,550.00	2,400.00	
Metering pump	1000 1]	2,500.00	2,500.00	5,000.00	
Phosphate Tank	1000 gal	1	2,500.00 850.00	1,550.00	2,400.00	
Metering pump	50 gpd	1	00.00	1,000.00	2,400.00	\$73,300.00
						Ψ10,000.00

Page 2

	Flare Burner Auto pilot,N-gas,air	600 CFM	1 1	10,500.00 6,500.00	4,000.00 3,500.00	14,500 00 10,000 00	\$24,500.00
	System Feed Pump Cent	1200 gpm, 40' TDH s/s	2	6,500.00	4,600.00	17,600.00	
	System Recirc Pump	Tab gpm, to tarrer		•			
	Cent	3000 gpm 70' TDH s/s	2	9,500.00	7,500.00	26,500.00	\$24,500.00
	Aerobic Secondary				4 200 00	47 200 00	
	Feed Pump Aerated Lagoon / 608	1100 gpm 40' TDH s/s	2	6,500.00	4,200.00 750,000.00	17,200.00 850,000.00	
T-608	Aeraled Lagoon / 60	2.5 MM gal	1	100,000.00	30,000.00	310,000.00	
	Floating aerators	8 x 50 hp	8	35,000.00	30,000.00	310,000.00	\$1,177,200 00
	01 (6)	275,000 gal	1	225,000.00	125,000.00	350,000.00	**(****)=
	Clarifier	2x25hp PD s/s	2	5.500.00	2,900.00	13.900.00	
	Sludge pumps	2x25hp cent	2	3,500.00	10.500.00	17,500 00	
	Effluent pumps/wet wells	2x25np cent	_	0,000.00	1	•	\$381,400.00
	Belt Thickener		1	210,000.00	65,000.00	275,000 00	
	Piping	Yard	1	62,000.00	78,000.00	140,000.00	
	Sludge holding Tanks/Load out	, and	1	45,000.00	25,000.00	70,000.00	
	olding ranks/Edd out						\$485,000.00
	Sand Filters						
	VortiSand Filters	0	0	0.00	0.00	0.00	
	Surge Tanks	0	0	0.00	0.00	0.00	\$0.00
	Chlorinator						
	Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
	Metering system		0	0.00	0.00	0.00	
	Contact Tank	0	0	0.00	0.00	0.00	
	C.T. Aerator	0	0	0.00	0.00	0.00	\$0.00
							φυ.υυ

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	475,000.00	475,000 00	\$475,000.00 ⁺
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Weather Protection Power Outage Protection		1		475,000 00	• 110,000
Buildings	Control Building	1		125,000.00	
Fencing MCC				55,000.00	
Site Electrical Subcontractors					\$655,000.00 +
Permits and Fees Taxes				35,000.00	\$ 055,000.00
Insurance					\$35,000.00 <i>‡</i> *
TOTAL					\$6, <u>013,805.00</u>
Plus 12 % Contingency		TOTAL LOSS CUMO PIPA INST 9 OF TOTAL	6,013,805 4,848,805 518,100		\$ <u>6,735,461.60</u>

Page 4

CHATTANOOG) BOILER AND TANK CL

March 25, 1998

Delta-T 460 McLaws Circle, Suite 150 Williamsburg, VA 23185

Attention: Mr. Hank Majdeski

Reference: DF-068

CB&T Est. 98-069

Dear Sir:

I am pleased to quote a budget price to furnish the necessary material and labor to design, detail, fabricate, erect, and test thirty-seven (37) field tanks as per the attached sketches 7-301 (Valve/10) and the provided specifications, as follows:

Budget pricing is quoted as: 1)

	<u>Otv</u>	<u>Minnesota</u>	North Carolina
F-300A/W	23	\$11,348,000	\$10,796,000
F-306A/B	2	\$ _621,000)	\$ 598,000
F-400A/L	10	\$ 1,733,000	\$ 1,639,000
F-404A/B (2.5 psig)	2	\$ 201,000	\$ 190,000
F-404A/B (15 psig)	2	\$ 317,000	\$ 298,000

Estimated net empty weight and field labor MH per tank are: 2)

	<u>Qty</u>	Weight (tons)	<u>Field MH</u>
F-300 A/W	23	2913	40,000
F-306A/B	2	147	2,700
F-400A/L	10	334	8,300
F-404A/B (2.5 psig)	2	30	1,100
F-404 A/B (15 psig)	2	61	1,600

- 3) Estimated pricing is inclusive of all sales and use taxes, please advise if project is non-taxable.
- Tanks will be designed per API-650 with the exception of F-404A/B (15 psig) 4) which will be designed in accordance with ASME Sect. VIII.

RETUR YOUR C PLEASE SIGNED FORM 40

PHONE CA

P.O. BOX 110 / CHATTANOOGA, TN 37401 \ FAX (423) 755-670

Thank you for the opportunity to provide this estimate. Please contact me if you require any additional information or a firm bid and subsequent construction schedule is needed.

Sincerely,

Jason Riddell

Project Manager

CDI IVIANUFACIUNING CO., INC.

P.O. BOX 11566

CHATTANOOGA, TN 37401

CUSTOMER_Delta - T	JOB NO. Est # 98 - 069
PROJECT	PAGE 1 OF 5
	Bottom: Lap Weld - Top Side Only
≈ ₹'-6"	t= 5/16 Top Compression Ring
5	t= 5/16
	±= 5/1
56' Dia.	±= 3/
ss'	£= 3/
to' typ.	== ½
	← t= 1/2
	t = 3/16"
REVISION BY/DATE	
CHKD/DATE	2

Summarized Field Fabricted Tank Specification

Preliminary

Item	Quantity	Description	Diameter, Ft	Height, FT	Working vol, Gal Ea	Materials	Fluid Type	Fluid Specific Gravity	Design Pressure PSIG	De: Temi
1	23	F-300A/W	56	55	962,651	304L	Slurry, 8 wgt % SS, 4 wgt % DS	1.06	2.5	4:
2	2	F-306A/B	49	48	643,226	304L	Slurry, 8 wgt % SS, 12 wgt % DS	1.06	2.5	-45
3	10	F-400A/L	36	37	267,631	304L	Slurry, 5 wgt % SS, 1 wgt % DS	1.06	2.5	-45
4	2	F-404A/B	24	24	77,155	304L	Slurry, 2 wgt % SS, 1 wgt % DS	1.01	15.0	-4 5
5	2	F-404A/B	24	24	77,155	304L	Slurry, 2 wgt % SS, 1 wgt % DS	1.01	2.5	-45

Notes

- 1) Tanks to be designed to API-650 or supplier recommended equal suitable for ethanol plant purposes
- 2) Budget pricing needed for union & non-union basis
- 3) Require estimated field direct labor MH for installation of each item for each unit
- 4) Assume union location in Minnesota....Non-union location in North Carolina
- 5) Provided estimated net empty weight for each item
- 6) Pricing and manhour estimates should be current day basis

		001			Nozzie Sc	hedule (Eac	h Tank)			-	
 24" Manway	20° Hatch	3" Level Connectio n	12" Process Inlet	12' Process Outlet	20° Vent	12" Agitiator	6" Sparger	8" CIP	6" Steam	3/4" Thermow el	1" L∈ Swit
× 1	1	2	1	1	1	3	6	2	1	2	1
1	1	2	1	1	1	3	6	2	1	2	1
1	1	2	1	1	1	2	6	2	1	2	1
1	1	2	1	1	1	1	6	2	1	2	1
1	1	2	1	1	1	1	6	2	1	2	1

Equipment Num :: T-608

Eqipment Name :: Aerobic Digestor

Associated PFD :: PFD-P100-A603

Equipment Type :: LINED-PIT

Equipment Category :: REACTOR

Equipment Description:: 19500000 gal, 16.3 day residence time

Equipment Description:: 19500000 gal,
Number Required :: 1

Number Spares :: 0

Scaling Stream :: AEROBVOL

Base Cost :: 635173.00

Cost Basis :: MERRICK98

Cost Year :: 1998

Base for Scaling :: 19506756.000

Base Type :: SIZE

Base Units :: GAL

Install Factor :: 1,0000

Base Units :: GAL Install. Factor :: 1.0000 Install. Factor Basis:: MERRICK98 Scale Factor Exponent:: 1.0000

Material of Const :: POLYMER LINED

Date Modified :: 01/13/99

Notes :: Using Goble Sampson 16.3 day residence time

Eq. No. Eq. Name Associated PFD	T-608 Aerobic Digestor A603		
Stream for Design Stream Description Flow Rate Liquid Density Frac Solids Flowrate Flowrate Flowrate COD Concentration	618 Reactor Inlet 185782 0.984 0 831.1 1,196,734 188755.4	Kg/hr g/cc gpm gal/day	R9809G R9809G R9809G 1196733.523
Sizing Option 1	100.1	1.6 /1	Phoenix Bio-Systems, Inc, Merrick Report
COD Loading COD Loading	438.4 10,522,048	Kg/hr	R9809G (See Conversion below)
Space Velocity		g/uay g/L/day	Merrick WWT Report 11/98
Volume	19,130,996	•	The state of the s
Volume	5,054,000	gal	
Sizing Option 2			Goble Sampson, Merrick Report
Residence Time	16.3	days	Sobie Gampoon, Memore Report
Volume	19,506,756	•	
Onet Fatimetica			
Cost Estimation Vessel Cost	\$504,700		Merrick Base
Volume	15,499,818		Werner Base
Installation Cost	\$0	-	Field Errected
Installation Factor	1.00		
Scaling Exponent	1.00		Garrett
Scaled Cost Option 1 Scaled Cost Option 2	\$ 164,567 \$ 635,173		Size probably not reasonable
Scaling Stream Scaling Rate Scaling Units	AEROBVOL 17,951,003 gal		Total volume required per vessel, calculated by ASPEN
	Kg/hr	COD Kg/hr	Per R9809G
Mass Flow KG/HR	· ·ʊ/· · ·	2 - 2 - 1.g/111	
Glucose	0.00	0	
Xylose	0.00	1.5543E-08	
Unknown	0.00	0	
Colsids	0.00	0 70040046	
Ethanol Arabinose	3.25 0.00	6.78210016	
Galactose	0.00	0	
Mannose	0.00	0	
Glucose Oligomers	0.00	0	

Cellibiose	0.00	0
Xylose Oligomers	0.00	0
Mannose Oligomers	0.00	0
Galactose Oligomers	0.00	0
Arabinose Oligomers	0.00	0
Xylitol	0.00	0
Furfural	54.04	90.2384834
HMF	18.21	27.6783336
Methane	2.49	9.95074
Lactic Acid	0.05	0.05659851
Acetic Acid	21.11	22.5878391
Glycerol	0.00	0.00069248
Succinic Acid	0.00	5.3504E-05
Denaturant	0.00	0
Oil	0.00	6.9176E-06
Acetate Oligomers	0.00	0
NH4Acet	245.95	281.123822
	345 003	138 118660 Kg

345.093 438.418669 Kg/hr of COD

Kg COD/Kg

Glucose	1.07 Per Merrick WWT Report 11/98
Xylose	1.07
Unknown	1.07
Colsids	0.71
Ethanol	2.09
Arabinose	1.07
Galactose	1.07
Mannose	1.07
Glucose Oligomers	1.07
Cellibiose	1.07
Xylose Oligomers	1.07
Mannose Oligomers	1.07
Gaactose Oligomers	1.07
Arabinose Oligomers	1.07
Xylitol	1.22
Furfural	1.67
HMF	1.52
Methane	4
Lactic Acid	1.07
Acetic Acid	1.07
Glycerol	1.22
Succinic Acid	0.95
Denaturant	3.52
Oil	2.89
Acetate Oligomers	1.07
NH4Acet	1.143

1 1M1 130, 0140611400

AERATOR SIZING CALCULATIONS FOR:

National Renewable Energy Lab

Date:

11/20/98

Goble Jampen Aeratur Lagon Size

Design Criteria

To convert from mg/l to lbs/day use the following equation: ung/l x 8.34 lb / 1,000,000 x Daily flow (MGD)

Flow:

1.17 Million Gallons per Day

BOD demand:

1660 mg/l converts to:

16198 lbs/day

Total Sus Solids:

200 mg/l converts to:

1952 Ibs/day

TKN:

0 mg/l converts to:

0 lbs/day

The pond volume is found using the following equation:

V = 13/3 (As + Ab + squareroot(As * Ab))

Where:

As = surface area

D = water depth

Ab = bottom area

V=cell volume in cu.ft.

Detention time is found by dividing volume by daily flow.

	<u>Cell 1</u>		Cell 2		<u>Cell 3</u>	
Width:	300.00	ft.	150.00	ſŧ.		ft.
Length:	600,00	ft.	300.00	ft.		ft.
Depth:	15.00	ft.	12.00	ft.		ſt.
Volume:	2129726		418856	cu.ft.	0	cu.ft.
Capacity:	15930352	Gal	3133043	Gal		Gal
Det.lime:	13.62	Days	2.68	Days)		Days

Oxygen required for BOD removal

17 or this application we are using:

2.00 lbs of O2 for each pound of BOD per

day (under working conditions). A residual oxygen level of

2.00 mg/l should

be maintained in the pond at all times.

ROD Oxygen requirement calculation.

16198 lbs of BOD/day x

2.00 lb of O2/16 BOD =

32396 lb 02/day

TKN Oxygen requirement calculation:

0 lbs of TKN/day x

4.60 lb of O2/lb TKN =

0 lb 02/day

Total Oxygen required per day is the total of the BOD and TKN demands.

32396 lbs/day +

Page 1 of 2 0 lbs/day =

32396 lbs O2 (under field conditions

Engineering Calculation Sheet

Date Contract of

Calculation No.

Subject 1/RE1	Revision	By	Date	China	
- Carlotte	UCAISIOI		Uaue	Chk'd	Date
477	1		<u> </u>		

AEROISIC LAGOON COST

51ZE 3 2@ 500' x 350' x 10' = 1250000 /t = +6300 yd3/

EXCAUATION @ 500 per 10 = #463,000 191,867

NINER! $32 = 500 \times 350 = 350,000$ $9 = \frac{350,000}{9} \times 150 = 41,700$

total = 465,000 $\frac{41,700}{2504,700}$ \$505

Per Phone Conversation w/ Steve 8/28/98:

Increasing BOD to ~ 150,000 79/2 will increase price to

Equipment Num :: T-610

Eqipment Name :: Clarifier

Associated PFD :: PFD-P100-A603

Equipment Type :: CLARIFIER

Equipment Category :: SEPARATOR

Equipment Description:: 195289 gal, Residence time 3.9 hr.

Equipment Description:: 195289 gal.

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 618

Base Cost :: 174385.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 185782.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1 9600

Base Units :: KG/HR Install. Factor :: 1.9600 Install. Factor Basis:: VENDOR Scale Factor Exponent:: 0.5100 Scale Factor Basis :: GARRETT

Material of Const :: CONCRETE
Utility Calc. :: ASPEN FORT BLCK
Utility Stream :: WT610
Utility Type :: POWER
Date Modified :: 01/13/99
Notes :: Expected Power F

Notes :: Expected Power Req: 4 kW.

Eq. No. Eq. Name Associated PFD	T-610 Clarifier A603	
Stream for Design Stream Description Flow Rate Average Density Flowrate Flowrate Residence Time	618 Primary Inlet 185782 Kg/hr 0.984 g/CC 831.1 gpm 49863.9 gph 3.9 hr	R9809G R9809G Back calculated from Information below
Calculated Volume Power Requirement	195,289 gal 5 hp 3.7 kW	Estimated
Volume Flowrate Vendor Equipment Cost Vendor Installation Cost	180,000 gal 766 gpm \$ 155,000 \$ 115,000	Phoenix Bio-Systems, Inc Merrick Appendix F "Case 1 - Equalization" Per above Per above
Prorated Additional Piping		
Total Cost of Option Overhead Portion Project Cost Less Overhead	\$3,737,350 \$760,000 d \$2,977,350	Phoenix Bio-Systems, Inc. Merrick Appendix F "Case 1", Design Engineering Fee + Site Preparation
Overall Piping & Installation		Controls+Temp Control+Piping
Overall Piping & Inst % Installation Cost Above Additional Prorated Installat	12.48% \$115,000 tiı \$33,698	From above
Total Installation Cost Installation Factor	\$148,698 1.96	Per above, extra piping and inst. Prorated
Scaling Exp Cost	0.51 \$ 174,385	Scaled to 831 gpm from 766 gpm
Scaling Stream Scaling Rate Scaling Units	618 185782 Kg/hr	

	CLIENT: PHONE/FAX: PROJECT NUMBER: DATE: TYPE: LOAD RATE: COD: FLOW:	Anaerobic/Aerobic 12 g/l/d & 0.55 g/l/d 4,173 mg/l and 334 mg/l 766 gpm	5/18/98					
	ITEM	Description		Qty	Unit Cost	Installation	Q x UC + I	Totals
	Treatability Laboratory Analysis	·		•				
	Preliminary Design							\$0.00
	Equalization							
	Equalization Dimensions Canacity (nat)	36'd x 44'h AOS SI SI						
202	Capacity (gal)	330000 gal		1	325,000.00	86,000.00	411,000.00	
						51, 296 PI	* finst	\$414,000:00~
	Main Reactor					\$137,296		462296
	Dimensions	24'd x 60'h AOS		2		, .		
	Capacity (gal)	385,000 gal ∕		1	350,000.00	95,000.00	445,000.00	
	Distribution Manifold	ICM s/s		8	4,950.00	10,500.00	50,100.00	
	Overflow collection system	PVC		2	3,500.00	7,500.00	14,500.00	
	Separator	10 x 12 Custom		2	24,500.00	17,500.00	66,500.00	
	Sample Cocks	1" PVC		24	50.00	1,200.00	2,400.00	
	Packing	TriPack PP	2	600	12.00	2,500.00	33,700.00	
	Insulation	9000 ft2	9	050	7.00		63,350.00	
								\$675,550.00
	Decarbonator							
	Capacity	3,000 gal		1	14,500.00	17,500.00	32,000.00	
	Dimensions	6'd x 18'h					0.00	
	Distributor	s/s		1	4,850.00	8,700.00	13,550.00	
	Packing	TriPack 3.5 PP	4	100	12.00	1,500.00	6,300.00	
	Demister			1	1,500.00	1,000.00	2,500 00	
	Gratings	FRP		1	3,500.00	3,000.00	6,500 00	
	Fan	3 hp		1	1,250.00	2,200.00	3,450.00	
	Drain							

Page 1

\$64,300.00

Fan Drain

Controls						
Field Instruments		1	85,000.00	8,500 00	93,500.00	
Pressure Ind		12	250 00	750.00	3,750.00	
Temp Indicators		12	250.00	750 00	3,750 00	
pH Controller		4	2,500.00	2,000 00	12,000.00	
Biogas Meter		1	4,300.00	1,250 00	5,550.00	
Panel		1	3,800.00	2,250.00	6,050 00	
PLC		1	9,500.00	5,500.00	15,000.00	
Control computer		1	10,500.00	7,500.00	18,000.00	
Soflware		1	4,000.00	12,000.00	16,000.00	
						\$173,600.00 *
Temp Control Hot water heater		٥	0.00	0.00	0.00	
Heat Exch		2	6,500.00	14,500.00	27,500.00	
Heat Excil		2	0,500.00	77,000.00	21,000.00	\$27,500.00 *
BioGas Scrubber						
Capacity	300 cf	1	6,500.00	7,600.00	14,100.00	
Grating	FRP	1	1,800.00	3,350.00	5,150.00	
Media	280	280	7.50	1,550 00	3,650.00	
						\$22,900.00
Piping						
PVC		1	75,000.00	55,000.00	130,000.00	
Heat trace/Insulate		1	12,500.00	28,000.00	40,500.00	
						\$170,500.00 *
Macronutrient Tank				0.500.00	40.000.00	
Tank	5000	1	8,500.00	3,500.00	12,000.00	
\Nutrient Feed Pump		1	1,500.00	3,800.00	5,300.00	
/Micronutrient Tank /			10		2 200 00	
Co4 Tank	3000	1	4,500.00	3,500 00	8,000.00	
hannen bamb / V V		1	1,500.00	3,800.00	5,300.00	
			د)			
Caustic Dosing Pump \	500 gpd	1	1,150,00	3,700.00	4,850.00	
/Tank	5500 gal	1	9,500.00	17,500.00	27,000.00	
/ Iron Tank	200 gat	1	550.00	500.00	1,050.00	
/ Metering pump		1	850.00	1,550.00	2,400.00	
Phosphate Tank	1000 gal	1	2,500.00	2,500.00	5,000.00	
Metering pump	50 gpd	1	850.00	1,550.00	2,400.00	£72.200.00 /
			H 31,400			\$73,300.00
			4 21,409			

Page 2

1

	Flare						
	Burner	150 CFM	1	8,500.00	4,000.00	12,500 00	
	Auto pilot,N-gas,air		1	4,500.00	3,500.00	8,000.00	**** **** ***
	0 . 5 . 10						\$20,500 00
	System Feed Pump	700 40LTD11-1-	2	4.000.00	2,700,00	12,500.00	
	Cent	766 gpm, 40' TDH s/s	2	4,900.00	2,700.00	12,500.00	
	System Recirc Pump	1500 701 701 . /2	2	8,000.00	4,500.00	20,500.00	
	Cent	1500 gpm 70' TDH s/s	2	6,000.00	4,500.00	20,500.00	\$20,500.00
							Ψ20,333 33
	Aerobic Secondary						
	Feed Pump	766 gpm 40' TDH s/s	2	4,900.00	3,500.00	13,300.00	
	Aerated Lagoon	0.9 mgal	1		500,000.00	500,000.00	
	Floating aerators	4x25 hp, 2 x 50 hp	6	25,000.00	22,000.00	172,000 00	
	Clarifier (, \(\ell \)				+33,	750	\$685,300.00
610	Clarifier (, \& `	180,000 gal	1	155,000 00	115,000 00,48	75 2 70,000:00	^{\$} 303, 750
,	Sludge pumps \	2x25hp PD s/s	2	5,500.00	2,900.00	13,900.00	· /
	Effluent pumps/wet wells	2x25hp cent	2	3,500.00	10,500.00	17,500 00	
							\$301,400.00
	Belt Thickener		1	110,000 00	42,000.00	152,000 00	
	Piping	Yard	1	42,000.00	67,000.00	109,000.00	
	Sludge holding Tanks/Load out		1	45,000.00	25,000.00	70,000.00	
							\$331,000.00
	Sand Filters						
	VortiSand Filters	0	0	0.00	0.00	0.00	
	Surge Tanks	0	0	0.00	0.00	0.00	
							\$0.00
	Chlorinator						
	Hypo Storage/feed Tk	0	0	0.00	0.00	0.00	
	Metering system		0	0.00	0.00	0 00	
	Contact Tank	0	0	0.00	0.00	0.00	
	C.T. Aerator	0	0	0.00	0.00	0.00	
							\$0.00

Design Engineering Fee Design Drawings Shop Drawings Wiring Diagrams Power Requirements Operating Manuals Administratative	all	1	250,000.00	250,000.00	\$250,000.00 +
Site Installation Site Preparation Off-Loading Pads Power Hook-Up Process Hook-Up Wealher Protection Power Outage Protection		1		295,000.00	\$230,000.00
Buildings	Control Building	1		125,000.00	
Fencing				55,000.00	
MCC Site Electrical				55,000.00	
Subcontractors					* +35 000 50 +
Permits and Fees Taxes				35,000.00	\$475,000.00 <i>†</i>
Insurance			•		\$35,000.00 *
TOTAL					\$3,737,350.00
Plus 12 % Contingency	Total Less Duho # Sua DIP d INST * PIP d INST 2 SUB	3,737,350 760,000 2977,350 371600 12.5%			\$4,18 <u>5,832.00</u>

Page 4

_

Equipment Num :: T-630

Eqipment Name :: Recycled Water Tank

Associated PFD :: PFD-P100-A601

Equipment Type :: FLAT-BTM-STORAGE

Equipment Category :: TANK

Equipment Description:: 13218 gal, Residence time 20 min, 2.5 psig

Equipment Description:: 13218 gal,

Number Required :: 1

Number Spares :: 0

Scaling Stream :: 602

Base Cost :: 14515.00

Cost Basis :: VENDOR

Cost Year :: 1998

Base for Scaling :: 179446.000

Base Type :: FLOW

Base Units :: KG/HR

Install Factor :: 1 4000

Base Units :: KG/HR Install. Factor :: 1.4000 Install. Factor Basis:: DELTA-T98 Scale Factor Exponent:: 0.7450 Scale Factor Basis :: VENDOR

Material of Const :: CS
Date Modified :: 01/13/99

Eq. No.	T-630
---------	-------

Eq. Name Recycle Water Tank

Associated PFD A601

Stream for Design 602 Stream Description Primary Inlet

Flow Rate 179446 Kg/hr R9809G Average Density 0.999 g/CC R9809G

Flowrate 790.7 gpm Flowrate 47440.1 gph

Residence Time 20 min Assumed

Calculated Volume 15,813 gal

Volume 13,218 gal Springs Fabrication Vendor Equipment Cost \$ 11,300 Per above

 50% Larger
 \$ 17,000
 19,827

 50% Smaller
 \$ 7,500
 6,609

Scaling Exp (Small->Large) 0.745

Cost \$ 14,515 Scaled Cost

Scaling Stream 602
Scaling Rate 179446
Scaling Units Kg/hr

4751 Fox Street • Derver, CO 80216
Fax: (303) 292-5430 Phone: (303) 294-0585
e-mail: gary@springsfab.com

Industrial Metal Products

ASME Pressure Vessels – Tanks – Piping – Skids Filter Housings – Stainless Alloy Products – Frames

Fax Cover Sheet

Tot	Mr. Jim Kassian	Frenz	Gary Quick
Compa	Merrick & Company /304	Pages:	One
Phones	751-0741	Desec	August 26, 1998
Face	75 1-2581	Rec	Budgetary Tank Figures (T-630)
	□ Urgent X for Re	retere 🗆	Please Comment Please Reply
Messa Fallowir Bottom	ng is the estimate based on our phon Sludge clean out door. Dimensions	on the tank	fion today. Tanks were figured with flat heads and one are 15 diameter and 10 side shell. 13218 gol for phone wigary Aug 24, 1998
HEAVY C	oury		
	Standard size (as above) 50% larger 50% smaller)	\$17,800.00 \$26,700.00 \$11,800.00

Thank you for the inquiry Jim. Hope this helps, please let me know if we can be of any further help.

Darren Hunt, one of our project managers did the estimating.

Sincerely,

Gary Quick

_ T-704	Firewater Storago time
	From I. Process 13104 (SOFTWOOD) P 92076-1
	444777 501
	(.7859 x 67 x 67) x 7.98) = 60'0 x 22' + ALL = 465,280 gal
-	$\frac{22^{2}+911-\frac{1}{52.4}+\frac{1}{1728}\frac{10^{2}}{1728\frac{10^{2}}{643}}\times (22\times 12)=\frac{9.53}{9519}$
	1728 (N) Fr3
	1875 ~ S.F. 4 Using #36 9150 PSI
:	Well -
T-630	Recycled H2O TANK
:	
	13095 gal
	(.7854 × 603 + 417 + 1.46) = [12'\$ × 18' +222] = 15250 qa/
	18'tall - 62.4 x (18 x 1) = 7.8 psig
	1726
	.125 well = SF=8 using A36 4500 ps 1
	·
, ,	- Iar
Ž.	J.W. 45 1AM
	₹-1 *

. .

Appendix G

Wastewater Treatment ASPEN Model

Wastewater Treatment Model Victoria Putsche November 11, 1998

A wastewater treatment model has been developed and incorporated into an NREL base model, W9806F. The resulting model, P9808B, has been checked into the Basis database. This report describes the assumptions behind the wastewater model. Attachment 1 contains a print-out from the model describing all of the changes, applicable ASPEN code (e.g., flowsheet, design-specs), and a block flow diagram with all design-specs and FORTRAN blocks for this section.

The overall design of the wastewater treatment system has not changed significantly over the NREL base model. It is still comprised of anaerobic digestion (T-606) followed by aerobic treatment (T-608) (Ruocco 1998). The new model, however, has simplified the flowsheet somewhat by replacing the RYIELD reactor with a user subroutine (USRANR). Now, the unreactable components (e.g., ash, lignin, water) do not need to be separated out prior to the digestor. Thus, the blocks associated with the separation and re-mixing (ASHSEP, UNCONVT) have been eliminated.

Another simplification of the design is in the aeration basins. Originally, the system was an oxygen fed system with a pressure swing adsorption unit to separate oxygen from air. The current design is an aerated lagoon with floating aerators. Since it is a lagoon, no temperature control will be provided. It will receive the effluent from the anaerobic digestors (618) at the temperature of digestion (35 °C) and so the aerobic feed cooler, H-601, is no longer needed. The temperature of the aerobic system was decreased to ambient, 20 °C, in the model since it is a lagoon. Any heat removed by the temperature drop is not included in the modeling since it represents heat dissipation to the atmosphere and would not require a cooling load.

As noted earlier, the anaerobic system is modeled using a user subroutine USRANR. A copy of the subroutine is also in the database as well as Attachment 2. The subroutine requires 5 real inputs from the user (in this order): chemical oxygen demand (COD) conversion, fraction of theoretical methane yield on COD, fraction of cell mass yield on COD, mole fraction of methane in the outlet gas, and the fraction of soluble sulfate components that are converted to hydrogen sulfide. In the current design, the COD conversion is set to 0.9, the fraction of theoretical methane conversion is 1.0, the fraction of COD converted to cell mass is 0.03 (Ruocco 1998). Testing of the enzyme sample showed a conversion of 73% of the COD, but it is expected that after full incubation, this sample would show conversions of 90-100% (Pinnacle 1998). Thus, the COD conversion factor is reasonable. It should be noted that the softwood process obtained digestibilities that were similar to the enzyme case and so the assumptions outlined above would be valid for this process. Tests on the countercurrent sample, however, were not promising with conversions of only 36% (Pinnacle 1998). When this process is modeled, different assumptions or more information should be obtained.

The expected fraction of methane in the off-gas is set to 0.75; in general, depending on the complexity of the feed, it can vary from 50 to 90% (Ruocco 1998). In the testing performed on

the NREL SSCF effluent from the enzyme process, the methane concentration was only 61.4% (Pinnacle 1998). Pinnacle expects that without CO_2 removal, the maximum methane concentration would be 70% (Nagle 1998). The proposed process, however, has a proprietary decarbonator technology which will likely increase the methane concentration. Thus, the assumed value of 75% for the enzyme case is reasonable.

The theoretical yield of methane on COD is 350 liters/kg COD converted (0.229 kg/kg at 25 °C). The mass conversion decreases to 0.221 kg/kg at the conditions of the digester (i.e., 35 °C). The subroutine uses the total COD loading in kg/hr (CODTOT) from the COMMON block, WWLOAD and the values specified by the user to determine the amount of methane and cell mass produced. Only soluble, carbon-containing compounds are considered to be converted. However, insoluble components such as cellulose and xylan may be converted by as much as 40% and 50%, respectively (Nagle 1998). For conservatism, no conversion of these compounds was assumed. One soluble compound, ammonium acetate, is currently modeled in the CISOLID substream, but will be converted in wastewater treatment.

After calculating the amount of methane and cell mass generated, the routine determines the amount of CO_2 that could be produced via mass balance $(CO_2(A))$. If this amount is less than that predicted assuming that methane is present at 75 mol% in the off-gas $(CO_2(B))$, then the amount of CO_2 produced is set equal to the $CO_2(A)$ and the amount of methane in the off-gas will be greater than 75 mol%. If $CO_2(A)$ is greater than $CO_2(B)$, then the amount of CO_2 produced is set equal to 25 mol% of the off-gas and the remaining mass (excess CO_2) is assumed to be converted to water, see Attachment 5.

For example, a kg of glucose with a COD of 1.07 will produce 1.07 kg of COD which corresponds to 0.213 kg of methane (i.e., 0.221 kg CH4/kg COD*1.07 kg COD*90% conversion) and 0.0321 kg of cell mass (i.e., 0.03 kg cell mass/kg COD*1.07 kg COD). Since only 1 kg (not 1.07 kg) of glucose can be converted, the amount of mass available for conversion to carbon dioxide is 0.7549 kg (i.e., 1 - 0.213 - 0.0321). On a molar basis, the biogas would then be comprised of 0.0133 kg-moles of methane (43.6 mol%) and 0.0172 kg-moles of carbon dioxide (56.4 mol%). If the amount of methane is fixed at 75 mol%, the amount of carbon dioxide can only be 25% and so the amount produced must be reduced. The remaining mass is assumed to be converted to water.

Attachment 2 contains a spreadsheet showing this calculation for most of the components present in the wastewater. In general, as shown on the spreadsheet, the predicted split between methane and CO₂ in the off-gas is roughly 50:50 mol% for all compounds. Thus, in all cases, the amount of CO₂ produced will be fixed at 25 mol% and some water will be generated.

In addition to these products, anaerobic digestion will degrade sulfur-containing compounds to H₂S and other compounds. For this analysis, all soluble sulfur-containing compounds (e.g., sulfuric acid, ammonium sulfate) are assumed to be degraded on a mole per mole basis to hydrogen sulfide. The remaining mass is assumed to be converted to water. For example, a mole of ammonium sulfate (MW 132) would produce one mole (34 g) of hydrogen sulfide and 98 g of

water. A mole of sulfuric acid (MW 98) would also produce one mole (34 g) of hydrogen sulfide and 64 g of water. On a mass conversion basis, 26% of the mass of ammonium sulfate and 35% of the sulfuric acid are converted to hydrogen sulfide, respectively.

As in the methane calculations, one soluble component, ammonium sulfate, is currently carried in the CISOLID substream. Gypsum, an insoluble component, will also be degraded to H₂S (Nagle 1998a). Although it is not currently present in the waste streams, the subroutine should be modified so that gypsum is also converted.

The assumption of 100% conversion of all sulfur-containing compounds to hydrogen sulfide may need to be revisited. The microbes will likely have an upper tolerance level. In fact, levels of 200-1,500 ppm may be considered toxic (Nagle 1998). Finally, the production of H₂S may have a negative effect on the production of methane due to competition for hydrogen. In general, for every mole of H₂S produced, the potential methane production is decreased by 0.5 moles (Nagle 1998). Thus, the subroutine should be changed to better reflect expected yields.

The subroutine does not perform a heat balance. Any load, however, is expected to be negligible and can generally be accomplished with ambient air cooling. The stream is flashed externally in T606FLSH.

The aerobic system is modeled as an RSTOIC block. In this block, it is assumed that 90% of the inlet COD is converted to CO_2 and water (60%) and cell mass (30%). In the conversion to cell mass, no attempt is made to balance the atoms; one pound of cell mass is produced for every pound of component degraded. Thus, the stoichiometric coefficient for cell mass is equivalent to the ratio of the component molecular weight to the cell mass molecular weight (i.e., kg component/kgmol component/kg cell mass/kg mol cell mass). Since the atoms are not balanced and the heating value of the cell mass is greater than most components, for every pound of cell mass generated, there is a net increase in the heat available. This is not problematic as long as the overall heat balance over the reactor does not increase. For the proposed system, (i.e., 60% aerobic digestion and 30% conversion to cell mass), the heat content of the products is less than the heat content of the feed. This reduction is due primarily to the 2 to 1 ratio of combustion products to cell mass. If the conversion of cell mass rises significantly, this may no longer hold true. Attachment 3 contains a print-out of a spreadsheet that can be used to calculate the heat in and out. This spreadsheet along with the spreadsheet showing the predicted methane/ CO_2 split are contained in a single workbook, WWTCALCS.XLS that has been added to the database.

As in the original design, the wastewater treatment system requires chemicals and nutrients. Table 1 provides a summary of typical addition rates (kg/kg COD) and costs (Ruocco 1998). In addition, typical costs for these components are also provided (Ruocco 1998). All of these chemicals will be modeled as the component WNUTR in stream 630 and they are assumed to always be added in the same proportion. The flowrate of this stream is controlled by the FORTRAN block WWNUT1. Here, the total for all of the components in kg/kg COD (3.67E-2) is ratioed against the inlet COD loading. The cost for these nutrients was determined as the average of all costs (\$0.11/lb).

Table 1
WWT Nutrient and Chemical
Demands and Costs

Chemical	kg/kg COD	(\$/kg)
Nitrogen (Urea)	2.7E-3	0.44
Phosphate (H ₃ PO4)	9.0E-4	0.35
Micro-Nutrients	1.5E-4	1.11
Caustic	3.3E-2	0.22

Following aerobic treatment, polymer is added for the filter press. The polymer is also modeled as the component WNUTR in stream 631. Addition of the polymer is controlled by the FORTRAN block WWNUT2. The cost of the polymer is \$2.50/lb and it is added at 7.63E-4 kg/kg COD (Ruocco 1998).

Three other FORTRAN blocks, CODCALC1, CODCALC2 and CODEND were developed to calculate the COD and biochemical oxygen demand (BOD) for the anaerobic digestor inlet (613), the aerobic digestor inlet (618) and the effluent from the process (619A), respectively. In all cases, the COD is equivalent to the theoretical oxygen demand for complete combustion. Only soluble, carbon-containing compounds are included in the calculation. As noted earlier, ammonium acetate, while in the CISOLID substream, is soluble and so will contribute to the COD loading.

COD is a measure of the amount of oxygen required to convert all of the carbon in a specific compound to carbon dioxide. Any reasonable units (e.g., moles oxygen/moles component) may be used, but in this analysis, the units are kg oxygen/kg component. For example, the COD of glucose is 1.07 kg oxygen/kg compound and is calculated as follows:

$$C_6H_{12}O_6 + 6 O_2 = 6 CO_2 + 6 H_2O$$

COD of glucose = $(6 \text{ kgmol } O_2*32 \text{ kg/kgmol})/(1 \text{ kgmol glucose}*180)$

kg/kgmol)

COD of glucose = 1.07 kg oxygen/kg glucose

The COD values used for the components in the NREL process are summarized in Table 2.

Table 2 Component COD Factors

Component	COD Factor (kg COD/kg)
C-6 and C-5 Sugars and Oligomers	1.07
Cellobiose	1.07
Ethanol	2.09
Furfural	1.67
Lactic Acid, Acetic Acid	1.07
Glycerol	1.22
Succinic Acid	0.95
Xylitol	1.22
HMF	1.52
Soluble Solids	0.71
Soluble Unknown	1.07
Corn Oil	2.89
Acetate Oligomers	1.07
Acetate	1.07

As shown on the table, the COD for most components is slightly greater than unity. This approximation agrees well with practice; CODs of sugar-based streams generally range from 1 to 1.1 (kg COD/kg component) (Nagle 1998a). This method of approximation results in values that are similar to tests performed on SSCF effluent that had been stripped of ethanol (Pinnacle 1998; Evergreen Analytical 1998). The predicted COD using the factors in Table 2 and the composition (without ethanol) provided by McMillan (1998) is 28,398 mg/l. The average of 3 measured values (Pinnacle 1998; Evergreen Analytical 1998) is 27,199 mg/l. Comparison of a more detailed compositional analysis of the sample could not be completed due to possible contamination (McMillan 1998a). Attachment 4 contains the measured COD values as well as a spreadsheet showing the projected COD value.

In the initial model, the BOD is calculated as 70% of the COD for all waste streams. This approximation agrees well with published ranges for COD and BOD for similar wastewater

(Perry 1998). Data on SSCF effluent predict a lower BOD/COD ratio, with an average value of 52% for all technologies (Evergreen Analytical 1998). The wastewater in the model, however, will have a different composition than that analyzed. In addition, it is expected that this ratio will change through each treatment step. Based on the projected wastewater compositions and the treatment system, the estimated BOD/COD ratio is 0.50 for the influent to anaerobic digestion, 0.20 for the influent to aerobic treatment and 0.10 for the system effluent (Ruocco 1998). Since BOD is a laboratory test and cannot be specifically predicted, the ratios provided above are estimates based on experience with other wastewater systems. The FORTRAN blocks CODCALC1, CODCALC2 and CODEND in the ASPEN model should be updated with the new BOD/COD ratios.

The COD calculations outlined above correspond to the COD loadings for anaerobic digestion. In aerobic treatment, nitrogen-containing compounds such as ammonium acetate will have a significant oxygen demand (e.g., 4.43 kg O₂ required per kg of NH₃).

Since ammonia is not converted in anaerobic digestion, the contribution of the reduced nitrogen compounds is <u>not</u> included in the overall COD calculation. In aerobic treatment, however, these compounds cannot be ignored. This fact requires two significant changes to the model. The first is that reduced nitrogen compounds that are converted in anaerobic digestion (i.e., ammonium acetate and ammonium sulfate) must be treated differently in the ASPEN model. Currently, the carbon and sulfur portions of these compounds are converted to biogas and hydrogen sulfide, respectively, and the other portion is converted to water. This system incorrectly ignores the nitrogen in the effluent from anaerobic digestion. The second major change is in the FORTRAN block CODCALC2. The current COD values are the same as those listed above in Table 3. As discussed, these COD do not include the contribution of reduced nitrogen. This contribution must be accounted for in aerobic treatment.

To remedy this situation, the following specific changes should be made to the ASPEN model:

- 1. The reduced nitrogen compounds should be carried through the wastewater treatment system as their component ions. Thus, an RSTOIC block should be added prior to the anaerobic system. Here, ammonium acetate would be converted to ammonia and acetate and ammonium sulfate would be converted to ammonia and sulfuric acid.
- 2. The FORTRAN block CODCALC1 would then need to be modified such that the COD value for acetate was 1.07.
- 3. Within the anaerobic digestion subroutine, no significant changes would be required except that ammonium sulfate would no longer be converted to hydrogen sulfide and ammonium acetate would no longer be converted to methane, carbon dioxide and water. The new substances, acetate, sulfuric acid and ammonia are already correctly handled in the subroutine. That is, acetate is converted to biogas; sulfuric acid is converted to hydrogen sulfide and water; and ammonia is not changed.

- 4. As noted earlier, the FORTRAN block CODCALC2 must be modified so that all reduced nitrogen compounds are included in the COD calculation. Since all of these compounds are now noted as ammonia, a new COD factor of 4.43 should be added and applied to ammonia. Ammonium hydroxide will also have a COD demand of 2.15.
- 5. The FORTRAN block that calculates the air addition, AERAIR, should be modified so that there is no excess air.
- 6. The aerobic reactor should be modified so that the ammonia-containing compounds are converted to nitrates as follows:

$$NH_3 + 2.25 O_2 = NO_3 + 1.5 H_2O$$

A conversion efficiency of 98% should be used for this reaction.

7. Finally, the FORTRAN block POWER should be modified so that the work stream for the aerators is correct. Each kg of oxygen required uses 2 hp-hr of energy. This should be added to the FORTRAN block as well as an appropriate work stream. The current system comprised of a compressor with an associated work stream should be deleted and replaced as outlined above. If these changes are made, it is expected that the ASPEN model will correctly simulate the wastewater treatment system. Other strategies would also likely work, but this appears to be the most straightforward.

References

Evergreen Analytical. 1998. Analysis Report, Lab Sample Numbers: 98-1697-01, 98-1593-01, 98-1609, April 22, 23, 30.

McMillan, J. 1998. Composition of post SSCF liquors, Memorandum to R. Wooley, June 10.

McMillan, J. 1998a. Personal communication, August 28.

Nagle, N. 1998. Personal communication, August 31.

Nagle, N. 1998a. Personal communication, August 27.

Perry, R.H. and Green, D.W. 1998. Perry's Chemical Engineers' Handbook, 7th edition, McGraw-Hill, New York, pg. 25-62.

Pinnacle Biotechnologies International, Inc. 1998. "Characterization and Anaerobic Digestion Analysis of Ethanol Process Samples", July.

Ruocco, J. 1998. Personal communication and cost estimates.

Attachment 1 Model Changes, ASPEN Code and ASPEN Block Flow Diagram

```
NREL PROTECTED INFORMATION
; NREL Biomass to Ethanol Process
; NREL Protected Information
; Best Case Cofermentation (4 96a.INP)
 Modified to include the NREL Biofuels Databank of Physical Properties
; Authors: Vicky Putsche, Bob Wooley, Mark Ruth, Kelly Ibsen
; Date: April 26, 1996
 Changes
; P9808B.INP; 08/18/98 VLP
  WWT Changes
; 1. Deleted ASHSEP and UNCONVT blocks and corresponding streams.
 2. Deleted O2/N2 separator (M608) because it is not needed (J. Ruocco)
; 3. Changed the anaerobic and aerobic temperatures to be 35 and 21C,
    respectively, based on information from J. Ruocco
; 4. Modified the conversions in the aerobic system, T608, to be
    60% conversion to CO2 and H2O and 30% to cell mass. Only soluble
    components will be degraded.
; 5. Modified FORTRAN WWNUTR1 to be based on the COD loading to
    anaerobic digestion. It controls all chemical (base) and nutrient
    addition (H3PO4, urea, micronutrients) to anaerobic digestion
; 6. Added the FORTRAN block WWNUTR2 to control polymer addition to
    aerobic treatment based on the COD loading to the aerobic system.
; 7. Modified excel costing spreadsheet (W9806_) to include new costs
    for anaerobic and aerobic treatment chemicals.
; 8. Deleted aerobic digestor feed cooler (H-606) and corresponding
    heat stream QH606 since cooling to the aerobic system is not
    required (J. Ruocco). The lower process temperature in aerobic
    treatment is due to ambient cooling only.
; 9. Added polymer addition stream 631 to S614, the belt press.
 10. Added stream 631 to the sensitivity block.
; 11. Changed aerobic cell conversion to be based on a mass basis without
     balancing atoms.
; 12. Replaced RYIELD anaerobic digester (T-606) with a user block.
; 13. Commented out agitation streams WT602 (Equalization Basin),
     WT604 (Nutrient addition), WT606 (Anaerobic Digestion), WT608
     (Aerobic Digestion) based on information from J. Ruocco
; 14. Added block NUTMIX to add nutrients to anaerobic digestion.
     added this to sequence 10
; 15. Changed stream reference for P-606 in PUMPS to 618 from 616 since
     it was deleted.
; 16. Changed the stream reference in the massflow sensitivity block
     from 616 to 618.
; 17. Added H2S as a component
; 18. Changed 531 destination from S-600 to the boiler M803MIX
; 19. Changed water recycle in WWT (627) from anaerobic digestion to
     aerobic
; 20. Added WWTSIZ to calculate the vessel volumes for anaerobic
```

```
digestion and aerobic treatment. Added the vessel volume
      variables, ANVOL and AERVOL to the sensitivity study with labels of
      ZZZNANA, and ZZZOAER
FLOWSHEET A600
;THIS SECTION MODELS THE WASTEWATER TREATMENT AREA.
    BLOCK DCOOL2 IN=525 OUT=600 QDCOOL2
   BLOCK S601 IN=600 OUT=602 601
BLOCK T630 IN=602 OUT=603 610
   BLOCK FWMIX IN=516 603 604 OUT=606
   BLOCK RWSPLT IN=606 OUT=219 430 411
   BLOCK S600 IN=520 247 821 535 1044 OUT=612 BLOCK H602 IN=612 OUT=613 QH602
   BLOCK NUTMIX IN=613 630 OUT=632
   BLOCK T606 IN=632 OUT=613C
   BLOCK T606FLSH IN=613C OUT=614 618
   BLOCK M606 IN=614 OUT=615 WM606
   BLOCK M608A IN=626 OUT=619 WM608A
BLOCK T608 IN=618 619 627 OUT=619A
   BLOCK T608FLSH IN=619A OUT=620 621
   BLOCK T610 IN=621 OUT=625 624
                  IN=625 631 OUT=627 623
   BLOCK S614
   BLOCK MPOW6 IN=WS601 WC601 WC614 WS614 OUT=WMP6
   DIGESTION (WASTE WATER TREATMENT) BLOCKS - AREA 6000
BLOCK T630 FSPLIT
   DESCRIPTION "RECYCLE WATER AND WWT LIQUID SEPARATOR"
   FRAC 610 .750
BLOCK RWSPLT FSPLIT
    DESCRIPTION "RECYCLE WATER SPLITTER"
    FRAC 219 0.8/430 .001
;THE FRACTIONS LISTED ARE ASSUMPTIONS. THE ACTUAL VALUES ARE
; DETERMINED BY THE FORTRAN BLOCK RECYCLE.
BLOCK S600 MIXER
   DESCRIPTION "TANK T-603 TO MIX PROCESS WASTEWATER AND OTHER WASTES"
   PARAM PRES=2
BLOCK FWMIX MIXER
   DESCRIPTION "TANK T-630 FOR MIXING FRESH H2O AND RECYCLE H2O"
   PARAM NPHASE=1 PHASE=L
BLOCK S601 SEP2
    DESCRIPTION "BEER BOTTOMS CENTRIFUGE"
    PARAM PRES=3.20
;THE FRACTIONAL SPLITS ARE BASED ON THE PDU VENDOR TESTS
;THAT SHOWED AN OUTLET SOLIDS CONCENTRATION OF
;30% AND 98% RECOVERY OF INSOLUBLE SOLIDS. SOLUBLE
; COMPONENTS ARE SPLIT SO THAT THE LIQUID FRACTION OF
; EACH STREAM HAS THE SAME COMPOSITION.
    FRAC STREAM=601 SUBSTREAM=MIXED COMPS=
        H2O ETHANOL FURFURAL HMF H2SO4 N2
                                            CO2 O2 CH4 &
        NO NO2 NH3 SOLSLDS GLUCOSE XYLOSE GALACTOS
        MANNOSE ARABINOS UNKNOWN AACID LACID CNUTR WNUTR
        CSL OIL DENAT GLUCOLIG CELLOB XYLOLIG MANOLIG
                                                          &
```

```
GALAOLIG ARABOLIG ACETOLIG GLYCEROL SUCCACID
       XYLITOL
       FRACS=.10 .10
       .10 .10 .10 .10
                                     .10 1. .10
        1. .10 .10 .10 .10
                                     .10 .10
                              .10
                                     .10
       .10 .10 .10
       . 10
;ALL CNUTR & CSL SHOULD HAVE BEEN CONSUMED IN CELLULASE PRODUCTION &
; SO ANY REMAINING SHOULD GO OFF TO WWT SO THAT THE RECYCLE WILL BE
; CORRECT. DENAT AND WNUTR SHOULD NOT BE IN THIS STREAM, BUT IF THEY
; ARE, THEY BEHAVE LIKE ANY LIQUID.
   FRAC STREAM=601 SUBSTREAM=CISOLID COMPS=CELLULOS XYLAN &
       ARABINAN MANNAN GALACTAN LIGNIN BIOMASS CELLULAS
       ZYMO CASO4 CAH2O2 GYPSUM TAR ACETATE ASH
   FRACS=
                              .980 .50 .50
       .980
              .980 .980
       0.50 0.980 0.980 0.980 .98 .980 0.98
BLOCK T610 SSPLIT
   DESCRIPTION "CLARIFIER"
   FRAC MIXED 625 0.1
   FRAC CISOLID 625 1.0
BLOCK S614 SSPLIT
   DESCRIPTION "DEWATERING BELT FILTER PRESS"
   FRAC MIXED 623 0.1
   FRAC CISOLID 623 1.0
BLOCK DCOOL2 HEATER
   DESCRIPTION "DUMMY COOLER / AMBIENT COOLING IN S601"
   PARAM TEMP=40. PRES=.0
BLOCK H602 HEATER
   DESCRIPTION "COOLER TO BRING WASTEWATER TO ANAEROBIC TEMP"
   PARAM TEMP=35.0 PRES=.0
BLOCK T608 RSTOIC
   DESCRIPTION "AEROBIC DIGESTOR"
   PARAM TEMP=21.1 PRES=1.0
   STOIC 1 MIXED 02 -6.0 / GLUCOLIG -1.0 / H2O 5.0 / CO2 6.0
   STOIC 2 MIXED 02 -12.0 / CELLOB -1.0 / H2O 11.0 / CO2 12.0
   STOIC 3 MIXED 02 -6.0 / GLUCOSE -1.0 / H2O 6.0 / CO2 6.0
   STOIC 4 MIXED 02 -6.0 / HMF -1.0 / H2O 3.0 / CO2 6.0
   STOIC 5 MIXED 02 -5.0 / XYLOLIG -1.0 / H2O 4.0 / CO2 5.0
   STOIC 6 MIXED 02 -5.0 / XYLOSE -1.0 / H2O 5.0 / CO2 5.0
   STOIC 7 MIXED 02 -5.0 / FURFURAL -1.0 / H2O 2.0 / CO2 5.0
   STOIC 8 MIXED 02 -6.0 / MANOLIG -1.0 / H2O 5.0 / CO2 6.0
   STOIC 9 MIXED 02 -6.0 / MANNOSE -1.0 / H2O 6.0 / CO2 6.0
   STOIC 10 MIXED 02 -6.0 / GALAOLIG -1.0 / H2O 5.0 / CO2 6.0
   STOIC 11 MIXED 02 -6.0 / GALACTOS -1.0 / H2O 6.0 / CO2 6.0
   STOIC 12 MIXED 02 -5.0 / ARABOLIG -1.0 / H2O 4.0 / CO2 5.0
   STOIC 13 MIXED 02 -5.0 / ARABINOS -1.0 / H2O 5.0 / CO2 5.0
   STOIC 15 MIXED 02 -2.0 / ACETOLIG -1.0 / H2O 2.0 / CO2 2.0
   STOIC 16 MIXED 02 -2.0 / AACID -1.0 / H2O 2.0 / CO2 2.0
   STOIC 17 MIXED 02 -3.0 / LACID -1.0 / H2O 3.0 / CO2 3.0
   STOIC 18 MIXED 02 -.50 / UNKNOWN -1.0 / H2O .50 / CO2 .50
   STOIC 19 MIXED 02 -1.27630 / SOLSLDS -1.0 / H2O .740 /
                 CO2 1.0 / SO2 .00130
   STOIC 20 MIXED 02 -3.0 / ETHANOL -1.0 / H2O 3.0 / CO2 2.0
```

```
STOIC 21 MIXED 02 -3.50 / GLYCEROL -1.0 / H2O 4.0 /CO2 3.0
STOIC 22 MIXED 02 -3.50 / SUCCACID -1.0 / H20 3.0 /CO2 4.0
STOIC 23 MIXED 02 -5.50 / XYLITOL -1.0 / H2O 6.0 / CO2 5.0
STOIC 24 MIXED 02 -2.75 / CISOLID NH4ACET -1.0 /
               MIXED H2O 3.5 / CO2 2.0 / N2 0.5
STOIC 25 MIXED GLUCOSE -1 / CISOLID BIOMASS 7.75281869
STOIC 26 MIXED MANNOSE -1 / CISOLID BIOMASS 7.75281869
STOIC 27 MIXED GALACTOS -1 / CISOLID BIOMASS 7.75281869
STOIC 28 MIXED XYLOSE -1.0 / CISOLID BIOMASS 6.46062489
STOIC 29 MIXED ARABINOS -1.0 / CISOLID BIOMASS 6.46062489
STOIC 30 MIXED XYLITOL -1.0 / CISOLID BIOMASS 6.54746538
STOIC 31 MIXED SOLSLDS -1.0 / CISOLID BIOMASS 0.71367586
STOIC 32 MIXED UNKNOWN -1.0 / CISOLID BIOMASS 0.64607109
STOIC 33 MIXED GLUCOLIG -1.0 / CISOLID BIOMASS 6.97628887
STOIC 34 MIXED GALAOLIG -1.0 / CISOLID BIOMASS 6.97628884
STOIC 35 MIXED MANOLIG -1.0 / CISOLID BIOMASS 6.97628884
STOIC 36 MIXED XYLOLIG -1.0 / CISOLID BIOMASS 5.68440485
STOIC 37 MIXED CELLOB -1.0 / CISOLID BIOMASS 14.7275927
STOIC 38 MIXED FURFURAL -1 / CISOLID BIOMASS 4.13116442
STOIC 39 MIXED HMF -1.0 / CISOLID BIOMASS 5.4269558
STOIC 40 MIXED AACID -1.0 / CISOLID BIOMASS 2.58197779
STOIC 41 MIXED LACID -1.0 / CISOLID BIOMASS 3.87296669
STOIC 42 MIXED SUCCACID -1.0 / CISOLID BIOMASS 5.07788966
STOIC 43 MIXED GLYCEROL -1.0 / CISOLID BIOMASS 3.9590326
STOIC 44 MIXED OIL -1.0 / CISOLID BIOMASS 12.155542
STOIC 45 MIXED ETHANOL -1.0 / CISOLID BIOMASS 1.97951631
STOIC 46 CISOLID NH4ACET -1.0 / CISOLID BIOMASS 3.317135
CONV 1 MIXED GLUCOLIG 0.6
CONV 2 MIXED CELLOB 0.6
CONV 3 MIXED GLUCOSE 0.6
CONV 4 MIXED HMF 0.6
CONV 5 MIXED XYLOLIG 0.6
CONV 6 MIXED XYLOSE 0.6
CONV 7 MIXED FURFURAL 0.6
CONV 8 MIXED MANOLIG 0.6
CONV 9 MIXED MANNOSE 0.6
CONV 10 MIXED GALAOLIG 0.6
CONV 11 MIXED GALACTOS 0.6
CONV 12 MIXED ARABOLIG 0.6
CONV 13 MIXED ARABINOS 0.6
CONV 15 MIXED ACETOLIG 0.6
CONV 16 MIXED AACID 0.6
CONV 17 MIXED LACID 0.6
CONV 18 MIXED UNKNOWN 0.6
CONV 19 MIXED SOLSLDS 0.6
CONV 20 MIXED ETHANOL 0.6
CONV 21 MIXED GLYCEROL 0.6
CONV 22 MIXED SUCCACID 0.6
CONV 23 MIXED XYLITOL 0.6
CONV 24 CISOLID NH4ACET 0.6
CONV 25 MIXED GLUCOSE 0.3
CONV 26 MIXED MANNOSE 0.3
CONV 27 MIXED GALACTOS 0.3
CONV 28 MIXED XYLOSE 0.3
CONV 29 MIXED ARABINOS 0.3
CONV 30 MIXED XYLITOL 0.3
CONV 31 MIXED SOLSLDS 0.3
```

```
CONV 32 MIXED UNKNOWN 0.3
    CONV 33 MIXED GLUCOLIG 0.3
    CONV 34 MIXED GALAOLIG 0.3
    CONV 35 MIXED MANOLIG 0.3
    CONV 36 MIXED XYLOLIG 0.3
    CONV 37 MIXED CELLOB 0.3
    CONV 38 MIXED FURFURAL 0.3
    CONV 39 MIXED HMF 0.3
    CONV 40 MIXED AACID 0.3
    CONV 41 MIXED LACID 0.3
    CONV 42 MIXED SUCCACID 0.3
    CONV 43 MIXED GLYCEROL 0.3
    CONV 44 MIXED OIL 0.3
    CONV 45 MIXED ETHANOL 0.3
    CONV 46 CISOLID NH4ACET 0.3
BLOCK M606 COMPR
    DESCRIPTION "OFF-GAS BLOWER"
    PARAM TYPE=ISENTROPIC PRES=2.360
BLOCK M608A COMPR
    DESCRIPTION "AEROBIC WWT REACTOR AIR BLOWER"
    PARAM TYPE=ISENTROPIC PRES=2.360
BLOCK T606FLSH FLASH2
    DESCRIPTION "FLASH FOR ANAEROBIC DIGESTION"
    PARAM PRES=1.0 DUTY=.0
BLOCK NUTMIX MIXER
   DESCRIPTION "ADDS CHEMICALS AND NUTRIENTS TO ANAEROBIC DIGESTION"
BLOCK T608FLSH FLASH2
   DESCRIPTION "FLASH FOR AEROBIC TREATMENT"
   PARAM PRES=.0 DUTY=.0
BLOCK MPOW6 MIXER
```

```
DESCRIPTION "AREA 6000 MISCELLANEOUS WORK SUMMER"
BLOCK T606 USER
    DESCRIPTION "Anaerobic Digester"
    SUBROUTINE USRANR
    PARAM NREAL=5
    REAL VALUE-LIST=0.9 1.0 0.03 0.75 1.0
    FLASH-SPECS 613C TP TEMP=95 <F> PRES=1
                   DESIGN SPECS
                  DIGESTER (AREA 6000)
DESIGN-SPEC CFUGE3S
; Varies the split of water and most of the mixed components
; to reach a specified solids fraction in 601. Works with
; fortran block CFUGESLD to vary not only water but several
; components
    DEFINE SOLIDS STREAM-VAR STREAM=601 SUBSTREAM=CISOLID
                 VARIABLE=MASS-FLOW
    DEFINE TMIXED STREAM-VAR STREAM=601 SUBSTREAM=MIXED
                  VARIABLE=MASS-FLOW
     RATIO = SOLIDS / (TMIXED+SOLIDS)
     WRITE(NHISTORY, 101) RATIO
F 101 FORMAT(' Cfuge 3 Design Spec',/,' Fraction Solids',g12.5)
    SPEC RATIO TO 0.30
    TOL-SPEC 0.01
    VARY BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS &
                   ID1=MIXED ID2=601 ELEMENT=1
    LIMITS 0.05 0.40
DESIGN-SPEC CT-T610
    DEFINE SOL625 STREAM-VAR STREAM=625 SUBSTREAM=CISOLID &
                  VARIABLE=MASS-FLOW
    DEFINE WAT625 STREAM-VAR STREAM=625 SUBSTREAM=MIXED
                  VARIABLE=MASS-FLOW
    The spec of 0.05 is just a guess -- MR 24 Apr 97
    SPEC"SOL625/(SOL625+WAT625)" TO "0.05"
    TOL-SPEC"0.001"
    VARY BLOCK-VAR BLOCK=T610 SENTENCE=FRAC VARIABLE=FRAC &
        ID1=MIXED ID2=625
    LIMITS "0.0" "1.0"
DESIGN-SPEC CT-S614
    DEFINE SOL623 STREAM-VAR STREAM=623 SUBSTREAM=CISOLID &
                  VARIABLE=MASS-FLOW
    DEFINE WAT623 STREAM-VAR STREAM=623 SUBSTREAM=MIXED
                  VARIABLE=MASS-FLOW
    The spec of 0.30 is just a guess -- MR 24 Apr 97
    SPEC"SOL623/(SOL623+WAT623)" TO "0.3"
    TOL-SPEC"0.001"
    VARY BLOCK-VAR BLOCK=S614 SENTENCE=FRAC VARIABLE=FRAC &
        ID1=MIXED ID2=623
    LIMITS "0.0" "1.0"
               DIGESTOR FORTRAN BLOCKS - AREA 6000
```

This FORTRAN Block works with the design-spec CFUGE3S to make vary the splits of all of the following components the same as water (F1). Water split is being varied by CFUGE3S. CSL Split is not controlled by this block. FORTRAN CFUGESLD BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F1 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=1 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F2 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=2 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F3 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=3 DEFINE F4 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=4 DEFINE F5 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=5 DEFINE F6 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=6 DEFINE F7 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC ۶ VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=7 DEFINE F8 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=8 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F9 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=9 DEFINE F10 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=10 DEFINE F11 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=11 DEFINE F12 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=12 DEFINE F15 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC ۶ VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=15 DEFINE F16 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=16 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F17 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=17 DEFINE F18 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=18 DEFINE F19 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=19 DEFINE F20 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC δ VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=20 DEFINE F21 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC ۶ VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=21 DEFINE F23 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC & VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=23 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F25 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=25 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC DEFINE F26 VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=26 DEFINE F27 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=27 DEFINE F28 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=28 DEFINE F29 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC δ VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=29 DEFINE F30 BLOCK-VAR BLOCK=S601 SENTENCE=FRAC ۶ VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=30

BLOCK-VAR BLOCK=S601 SENTENCE=FRAC

VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=31

DEFINE F31

```
BLOCK-VAR BLOCK=S601 SENTENCE=FRAC
    DEFINE F32
                   VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=32
    DEFINE F33
                   BLOCK-VAR BLOCK=S601 SENTENCE=FRAC
                                                        ₽
                   VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=33
    DEFINE F34
                   BLOCK-VAR BLOCK=S601 SENTENCE=FRAC
                   VARIABLE=FRACS ID1=MIXED ID2=601 ELEMENT=34
;
F
     F2=F1
F
     F3=F1
F
     F4=F1
F
     F5=F1
F
     F6=F1
F
     F7=F1
F
     F8=F1
F
     F9=F1
F
     F10=F1
F
     F11=F1
F
     F12=F1
F
     F15=F1
F
     F16=F1
F
     F17=F1
F
     F18=F1
F
     F19=F1
F
     F20=F1
F
     F21=F1
F
     F23=F1
F
     F25=F1
F
     F26=F1
F
     F27=F1
F
     F28=F1
F
     F29=F1
F
     F30=F1
F
     F31=F1
F
     F32=F1
F
    F33=F1
F
     F34=F1
    EXECUTE BEFORE BLOCK S601
;
FORTRAN AERAIR
        COMMON/ WWLOD2/ COD2, BOD2, CODDY2, BODDY2
    DEFINE AIR STREAM-VAR STREAM=626 SUBSTREAM=MIXED &
        VARIABLE=MOLE-FLOW
C THE AIR REQUIREMENT IS 50% ABOVE THEORETICAL (J. RUOCCO)
С
F
      XO2 = 2.5*COD2
F
      AIR=XO2/0.21
    EXECUTE BEFORE BLOCK T608
FORTRAN RECYCLE
; BLOCK TO CALCULATE THE AMOUNT OF RECYCLE NEEDED AND INCOMING
; FRESH WATER
; DEFINE VARIABLES FOR FRESH WATER AND PROCESS RECYCLE WATER
    DEFINE FWAT STREAM-VAR STREAM=604 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
    DEFINE RWAT STREAM-VAR STREAM=603 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
     DEFINE RWT2 STREAM-VAR STREAM=534 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
    DEFINE RWT3 STREAM-VAR STREAM=516 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
```

```
;;
;; DEFINE VARIABLES FOR RECYCLE WATER STREAM #1. THIS STREAM
;; CONTROLS THE SOLIDS CONCENTRATION IN THE IMPREGNATOR.
;;
;
     DEFINE CI1 STREAM-VAR STREAM=214A SUBSTREAM=CISOLID
                                                                         ኤ
;
                 VARIABLE=MASS-FLOW
     DEFINE STV1 STREAM-VAR STREAM=215 SUBSTREAM=MIXED
                                                                         ۶
                  VARIABLE=MASS-FLOW
     DEFINE STV2 STREAM-VAR STREAM=216 SUBSTREAM=MIXED
                  VARIABLE=MASS-FLOW
     DEFINE ACV1 STREAM-VAR STREAM=212 SUBSTREAM=MIXED
                  VARIABLE=MASS-FLOW
     DEFINE FDV1 STREAM-VAR STREAM=101 SUBSTREAM=MIXED
                                                                         δz
                 VARIABLE=MASS-FLOW
     DEFINE RI1 STREAM-VAR STREAM=211 SUBSTREAM=CISOLID
                 VARIABLE=MASS-FLOW
; DEFINE VARIABLES FOR RECYCLE WATER STREAM #2 (Stream. 219). THIS
; STREAM CONTROLS THE SOLIDS CONCENTRATION to fermentation
    DEFINE RV2 STREAM-VAR STREAM=219 SUBSTREAM=MIXED
                                                                        ۶
                VARIABLE=MASS-FLOW
     DEFINE RI2 STREAM-VAR STREAM=219 SUBSTREAM=CISOLID
                VARIABLE=MASS-FLOW
    DEFINE RGLU MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                COMPONENT=GLUCOSE
    DEFINE RXYE MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                COMPONENT=XYLOSE
     DEFINE RSSL MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                COMPONENT=SOLSLDS
     DEFINE RARS MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                COMPONENT=ARABINOS
     DEFINE RGAS MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                COMPONENT=GALACTOS
     DEFINE RMAS MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                 COMPONENT=MANNOSE
    DEFINE RCSL MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                 COMPONENT=CSL
     DEFINE RCNT MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                COMPONENT=CNUTR
     DEFINE RWNT MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                COMPONENT=WNUTR
     DEFINE RGLO MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                COMPONENT=GLUCOLIG
     DEFINE RCLB MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                 COMPONENT=CELLOB
     DEFINE RXYO MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                 COMPONENT=XYLOLIG
     DEFINE RMAO MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         ۶
                 COMPONENT=MANOLIG
    DEFINE RGAO MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                 COMPONENT=GALAOLIG
     DEFINE RARO MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                                                                         δε
                 COMPONENT=ARABOLIG
     DEFINE RACO MASS-FLOW STREAM=219 SUBSTREAM=MIXED
                 COMPONENT=ACETOLIG
; DEFINE THE COMPONENTS OF STREAM 232 (Diluted Hydrolysate)
    DEFINE HF1 STREAM-VAR STREAM=232 SUBSTREAM=MIXED
                                                                       ۶
```

			WARTARIE MACC RION	
	DEFINE		VARIABLE=MASS-FLOW STREAM-VAR STREAM=232 SUBSTREAM=CISOLID	&
			VARIABLE=MASS-FLOW	
	DEFINE	HGLU	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=GLUCOSE	&
	DEFINE	HXYE	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=XYLOSE	&
	DEFINE	HSSL	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=SOLSLDS	&
	DEFINE	HARS	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=ARABINOS	&
	DEFINE	HGAS	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=GALACTOS	&
	DEFINE	HMAS	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=MANNOSE	&
	DEFINE	HCSL	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=CSL	&
	DEFINE	HCNT	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=CNUTR	&
	DEFINE	HWNT	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=WNUTR	&
	DEFINE	HGLO	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=GLUCOLIG	&
	DEFINE	HCLB	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=CELLOB	&
	DEFINE	НХҮО	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=XYLOLIG	&
	DEFINE	HMAO	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=MANOLIG	&
	DEFINE	HGAO	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=GALAOLIG	&
	DEFINE	HARO	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=ARABOLIG	&
	DEFINE	HACO	MASS-FLOW STREAM=232 SUBSTREAM=MIXED COMPONENT=ACETOLIG	&
; ;	DEFINE THE	E COMI	PONENTS OF STREAM 401 (Feed to Cellulase Production)	
; ;	DEFINE	E CFF	1 STREAM-VAR STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFS	VARIABLE=MASS-FLOW 1 STREAM-VAR STREAM=401 SUBSTREAM=CISOLID	&
; ;	DEFINE	E CFG	VARIABLE=MASS-FLOW LU MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFX	COMPONENT=GLUCOSE YE MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFS	COMPONENT=XYLOSE SL MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFAI	COMPONENT=SOLSLDS RS MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFG	COMPONENT=ARABINOS AS MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFM	COMPONENT=GALACTOS AS MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFC	COMPONENT=MANNOSE SL MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	DEFINE	E CFCI	COMPONENT=CSL NT MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
;	DEFINE	E CFWI	COMPONENT=CNUTR NT MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
;			COMPONENT=WNUTR	

; ;	DEFINE CFGLO MASS-FLOW STREAM=401 SUBSTREAM=MIXED COMPONENT=GLUCOLIG	&
;	DEFINE CFCLB MASS-FLOW STREAM=401 SUBSTREAM=MIXED COMPONENT=CELLOB	&
;	DEFINE CFXYO MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	COMPONENT=XYLOLIG DEFINE CFMAO MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
; ;	COMPONENT=MANOLIG DEFINE CFGAO MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
;	COMPONENT=GALAOLIG DEFINE CFARO MASS-FLOW STREAM=401 SUBSTREAM=MIXED	&
;	COMPONENT=ARABOLIG	
; ;	DEFINE CFACO MASS-FLOW STREAM=401 SUBSTREAM=MIXED COMPONENT=ACETOLIG	&
; ;	DEFINE THE COMPONENTS OF STREAM 422 (Cellulase to SSCF Production)	
	DEFINE CPF1 STREAM-VAR STREAM=422 SUBSTREAM=MIXED VARIABLE=MASS-FLOW	&
	DEFINE CPS1 STREAM-VAR STREAM=422 SUBSTREAM=CISOLID VARIABLE=MASS-FLOW	&
	DEFINE CPGLU MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=GLUCOSE DEFINE CPXYE MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=XYLOSE DEFINE CPSSL MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=SOLSLDS DEFINE CPARS MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=ARABINOS	
	DEFINE CPGAS MASS-FLOW STREAM=422 SUBSTREAM=MIXED COMPONENT=GALACTOS	&
	DEFINE CPMAS MASS-FLOW STREAM=422 SUBSTREAM=MIXED COMPONENT=MANNOSE	&
	DEFINE CPCSL MASS-FLOW STREAM=422 SUBSTREAM=MIXED COMPONENT=CSL	&
	DEFINE CPCNT MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=CNUTR DEFINE CPWNT MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=WNUTR DEFINE CPGLO MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=GLUCOLIG DEFINE CPCLB MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=CELLOB	
	DEFINE CPXYO MASS-FLOW STREAM=422 SUBSTREAM=MIXED COMPONENT=XYLOLIG	&
	DEFINE CPMAO MASS-FLOW STREAM=422 SUBSTREAM=MIXED COMPONENT=MANOLIG	&
	DEFINE CPGAO MASS-FLOW STREAM=422 SUBSTREAM=MIXED COMPONENT=GALAOLIG	&
	DEFINE CPARO MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
	COMPONENT=ARABOLIG DEFINE CPACO MASS-FLOW STREAM=422 SUBSTREAM=MIXED	&
;	COMPONENT=ACETOLIG	
	DEFINE THE COMPONENTS OF STREAM 311 (CSL to SSCF Production)	
	DEFINE CLF1 STREAM-VAR STREAM=311 SUBSTREAM=MIXED VARIABLE=MASS-FLOW	&
	DEFINE CLS1 STREAM-VAR STREAM=311 SUBSTREAM=CISOLID VARIABLE=MASS-FLOW	&

	DEFINE	CLGLU	MASS-FLOW STREAM=311 COMPONENT=GLUCOSE	SUBSTREAM=MIXED	&
	DEFINE	CLXYE	MASS-FLOW STREAM=311 COMPONENT=XYLOSE	SUBSTREAM=MIXED	&
	DEFINE	CLSSL	MASS-FLOW STREAM=311 COMPONENT=SOLSLDS	SUBSTREAM=MIXED	&
	DEFINE	CLARS	MASS-FLOW STREAM=311 COMPONENT=ARABINOS	SUBSTREAM=MIXED	&
	DEFINE	CLGAS	MASS-FLOW STREAM=311 COMPONENT=GALACTOS	SUBSTREAM=MIXED	&
	DEFINE	CLMAS	MASS-FLOW STREAM=311 COMPONENT=MANNOSE	SUBSTREAM=MIXED	&
	DEFINE	CLCSL	MASS-FLOW STREAM=311 COMPONENT=CSL	SUBSTREAM=MIXED	&
	DEFINE	CLCNT	MASS-FLOW STREAM=311 COMPONENT=CNUTR	SUBSTREAM=MIXED	&
	DEFINE	CLWNT	MASS-FLOW STREAM=311 COMPONENT=WNUTR	SUBSTREAM=MIXED	&
	DEFINE	CLGLO	MASS-FLOW STREAM=311 COMPONENT=GLUCOLIG	SUBSTREAM=MIXED	&
			MASS-FLOW STREAM=311 COMPONENT=CELLOB		&
			MASS-FLOW STREAM=311 COMPONENT=XYLOLIG		&
			MASS-FLOW STREAM=311 COMPONENT=MANOLIG		&
			MASS-FLOW STREAM=311 COMPONENT=GALAOLIG		&
	DEFINE	CLARO	MASS-FLOW STREAM=311 COMPONENT=ARABOLIG	SUBSTREAM=MIXED	&
	DEFINE	CLACO	MASS-FLOW STREAM=311 COMPONENT=ACETOLIG	SUBSTREAM=MIXED	&
					&
; ; DEI ;	FINE TH	E COMPO	COMPONENT=ACETOLIG ONENTS OF STREAM 303 STREAM-VAR STREAM=303	Feed to SSCF Seed)	&
	FINE THE	E COMPO SFF1 S SFS1 S	COMPONENT=ACETOLIG ONENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED	
	FINE THE DEFINE DEFINE	E COMPO SFF1 S SFS1 S	COMPONENT=ACETOLIG ONENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID	&
	FINE THE DEFINE DEFINE DEFINE	E COMP(SFF1 : SFS1 : SFSLU	COMPONENT=ACETOLIG ONENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED	& &
	FINE THI DEFINE DEFINE DEFINE DEFINE	E COMPO SFF1 S SFS1 S SFGLU SFXYE	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED SUBSTREAM=MIXED	& & &
	FINE THI DEFINE DEFINE DEFINE DEFINE DEFINE	E COMPO SFF1 S SFS1 S SFGLU SFXYE SFSSL	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED	& & & &
	FINE THI DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE	SFF1 SFS1 SFS1 SFS1 SFSS1 SFXYE	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303 COMPONENT=SOLSLDS MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED	& & & & &
	FINE THI DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE	SFF1 SFS1 SFSL SFARS	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303 COMPONENT=SOLSLDS MASS-FLOW STREAM=303 COMPONENT=ARABINOS MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED	& & & & & &
	FINE THE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE	E COMPO SFF1 S SFS1 S SFGLU SFXYE SFSSL SFARS SFGAS SFMAS	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303 COMPONENT=SOLSLDS MASS-FLOW STREAM=303 COMPONENT=ARABINOS MASS-FLOW STREAM=303 COMPONENT=GALACTOS MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED	& & & & & & &
	FINE THE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE	E COMPO SFF1 S SFS1 S SFGLU SFXYE SFSSL SFARS SFGAS SFGAS SFMAS SFCSL	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303 COMPONENT=SOLSLDS MASS-FLOW STREAM=303 COMPONENT=ARABINOS MASS-FLOW STREAM=303 COMPONENT=GALACTOS MASS-FLOW STREAM=303 COMPONENT=MANNOSE MASS-FLOW STREAM=303 COMPONENT=MANNOSE MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED SUBSTREAM=MIXED	& & & & & & & &
	FINE THE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE DEFINE	E COMPO SFF1 S SFS1 S SFGLU SFXYE SFSSL SFARS SFGAS SFGAS SFGAS SFCSL SFCSL SFCNT	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303 COMPONENT=SOLSLDS MASS-FLOW STREAM=303 COMPONENT=ARABINOS MASS-FLOW STREAM=303 COMPONENT=GALACTOS MASS-FLOW STREAM=303 COMPONENT=MANNOSE MASS-FLOW STREAM=303 COMPONENT=MANNOSE MASS-FLOW STREAM=303 COMPONENT=CSL MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED	& & & & & & & & &
	FINE THE DEFINE	E COMPO SFF1 S SFS1 S SFGLU SFXYE SFSSL SFARS SFGAS SFGAS SFGAS SFCSL SFCSL SFCNT	COMPONENT=ACETOLIG DNENTS OF STREAM 303 STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW STREAM-VAR STREAM=303 VARIABLE=MASS-FLOW MASS-FLOW STREAM=303 COMPONENT=GLUCOSE MASS-FLOW STREAM=303 COMPONENT=XYLOSE MASS-FLOW STREAM=303 COMPONENT=SOLSLDS MASS-FLOW STREAM=303 COMPONENT=ARABINOS MASS-FLOW STREAM=303 COMPONENT=GALACTOS MASS-FLOW STREAM=303 COMPONENT=MANNOSE MASS-FLOW STREAM=303 COMPONENT=CSL MASS-FLOW STREAM=303 COMPONENT=CSL MASS-FLOW STREAM=303 COMPONENT=CNUTR MASS-FLOW STREAM=303	Feed to SSCF Seed) SUBSTREAM=MIXED SUBSTREAM=CISOLID SUBSTREAM=MIXED & & & & & & & & & &	

			COMPONENT=CELLOB	
	DEFINE	SFXYO	MASS-FLOW STREAM=303 SUBSTREAM=MIXED COMPONENT=XYLOLIG	&
	DEFINE	SFMAO	MASS-FLOW STREAM=303 SUBSTREAM=MIXED COMPONENT=MANOLIG	&
	DEFINE	SFGAO	MASS-FLOW STREAM=303 SUBSTREAM=MIXED COMPONENT=GALAOLIG	&
	DEFINE	SFARO	MASS-FLOW STREAM=303 SUBSTREAM=MIXED COMPONENT=ARABOLIG	&
	DEFINE	SFACO	MASS-FLOW STREAM=303 SUBSTREAM=MIXED COMPONENT=ACETOLIG	&
	DEFINE TH	E COMP	ONENTS OF STREAM 304 (SSCF Seed to Production)	
;	DEFINE		STREAM-VAR STREAM=304 SUBSTREAM=MIXED VARIABLE=MASS-FLOW	&
	DEFINE	SPS1	STREAM-VAR STREAM=304 SUBSTREAM=CISOLID VARIABLE=MASS-FLOW	&
	DEFINE	SPGLU	MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=GLUCOSE	&
	DEFINE	SPXYE	MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=XYLOSE	&
			MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=SOLSLDS	&
		-	MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=ARABINOS	&
			MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=GALACTOS	&
			MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=MANNOSE	&
			MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=CSL	&
			MASS-FLOW STREAM=304 SUBSTREAM=MIXED COMPONENT=CNUTR MASS-FLOW STREAM=304 SUBSTREAM=MIXED	& &
			COMPONENT=WNUTR MASS-FLOW STREAM=304 SUBSTREAM=MIXED	& &
			COMPONENT=GLUCOLIG MASS-FLOW STREAM=304 SUBSTREAM=MIXED	&
			COMPONENT=CELLOB MASS-FLOW STREAM=304 SUBSTREAM=MIXED	&
			COMPONENT=XYLOLIG MASS-FLOW STREAM=304 SUBSTREAM=MIXED	&
	DEFINE	SPGAO	COMPONENT=MANOLIG MASS-FLOW STREAM=304 SUBSTREAM=MIXED	&
	DEFINE	SPARO	COMPONENT=GALAOLIG MASS-FLOW STREAM=304 SUBSTREAM=MIXED	&
	DEFINE	SPACO	COMPONENT=ARABOLIG MASS-FLOW STREAM=304 SUBSTREAM=MIXED	&
;	CONTROLS	THE XY	COMPONENT=ACETOLIG S FOR RECYCLE WATER STREAM #3. THIS STREAM LOSE AND CELLULOSE CONCENTRATIONS IN 431. IS SET TO 1%.	
;	DEFINE		TREAM-VAR STREAM=403 SUBSTREAM=MIXED	&
	DEFINE	CI3 S	ARIABLE=MASS-FLOW TREAM-VAR STREAM=403 SUBSTREAM=CISOLID	&
	DEFINE		ARIABLE=MASS-FLOW TREAM-VAR STREAM=430 SUBSTREAM=CISOLID	&

```
VARIABLE=MASS-FLOW
     DEFINE ST3X MASS-FLOW STREAM=403 SUBSTREAM=MIXED
                                                                       &
                COMPONENT=XYLOSE
     DEFINE ST3C MASS-FLOW STREAM=403 SUBSTREAM=CISOLID
                                                                       &
                COMPONENT=CELLULOSE
     DEFINE R3X MASS-FLOW STREAM=430 SUBSTREAM=MIXED
               COMPONENT=XYLOSE
     DEFINE R3C MASS-FLOW STREAM=430 SUBSTREAM=CISOLID
               COMPONENT=CELLULOSE
; DEFINE VARIABLES FOR RECYCLE WATER STREAM #4. THIS STREAM
; CONTROLS THE CELLULOSE CONCENTRATION IN 412A.
; CURRENTLY, THIS IS SET TO 4%.
     DEFINE CV4 STREAM-VAR STREAM=410 SUBSTREAM=MIXED
                                                                       &
               VARIABLE=MASS-FLOW
     DEFINE CI4 STREAM-VAR STREAM=410 SUBSTREAM=CISOLID
                                                                       &
               VARIABLE=MASS-FLOW
     DEFINE RI4 STREAM-VAR STREAM=411 SUBSTREAM=CISOLID
                                                                       ۶
               VARIABLE=MASS-FLOW
     DEFINE ST4C MASS-FLOW STREAM=410 SUBSTREAM=CISOLID
                COMPONENT=CELLULOSE
     DEFINE R4C MASS-FLOW STREAM=411 SUBSTREAM=CISOLID
               COMPONENT=CELLULOSE
; DEFINE SPLIT VARIABLES IN THE RECYCLE WATER SPLITTER.
     DEFINE F1 BLOCK-VAR BLOCK=RWSPLT SENT=FRAC &
;
               VARIABLE=FRAC ID1=211
     DEFINE F2 BLOCK-VAR BLOCK=RWSPLT SENT=FRAC &
              VARIABLE=FRAC ID1=219
     DEFINE F3 BLOCK-VAR BLOCK=RWSPLT SENT=FRAC &
              VARIABLE=FRAC ID1=430
; DEFINE THE COMPONENTS OF STREAM 220 (Out of Pre Hydrolysis
    DEFINE HP1 STREAM-VAR STREAM=220 SUBSTREAM=MIXED
                                                                      &
               VARIABLE=MASS-FLOW
     DEFINE HPS1 STREAM-VAR STREAM=220 SUBSTREAM=CISOLID
                                                                        &
                VARIABLE=MASS-FLOW
; FORTRAN STATEMENTS
C CSLCONC is the solids concentration of CSL
     CSLCONC=0.5
С
; C
;c CONC1: Solids Concentration in Impregnator Feed, Stream 214A
; c
     CONC1 = 0.3091
;F
      CV1 = ((1.-CONC1)/CONC1) * CI1 - STV1 - STV2
;F
;; c
;c AV1 Recycle water flow (Stream 211)
; C
;F
     AV1 = CV1 - (ACV1 + FDV1)
iC
c AV2: Recycle water flow (Stream 219)
c CONC2: Total Solids Conc going to Fermentation (Stream 232)
         (Includes sugars + solslds)
C SLD232: Total Solids in Stream 232
C SLD219: Total Solids in Stream 219
```

```
TTL232: Total Flow in Stream 232
  TTL219: Total Flow in Stream 219
  CNC219: Total Solids Conc in Stream 219
  OTHSLD: Total Other Solids
  OTHTTL: Total Other Flow
  CONC2 is the desired SSCF effective solids concentration
C
F
      CONC2 = 0.2
   OLG calcs are the oligomer flows in each stream
С
   SLD calcs are the total solids in each stream
С
      OLG232 = HGLO + HCLB + HXYO + HMAO + HGAO + HARO + HACO
F
      SLD232 = HS1 + HGLU + HXYE + HSSL + HARS + HGAS + HMAS +
F
               (HCSL*CSLCONC) + HCNT + HWNT + OLG232
F
      OLG219 = RGLO + RCLB + RXYO + RMAO + RGAO + RARO + RACO
F
      SLD219 = RI2 + RGLU + RXYE + RSSL + RARS + RGAS + RMAS +
F
               (RCLS*CSLCONC) + RCNT + RWNT + OLG219
F
      OLG401 = CFGLO + CFCLB + CFXYO + CFMAO + CFGAO + CFARO + CFACO
F
      SLD401 = CFI2 + CFGLU + CFXYE + CFSSL + CFARS + CFGAS + CFMAS +
               (CFCLS*CSLCONC) + CFCNT + CFWNT + OLG401
F
      OLG422 = CPGLO + CPCLB + CPXYO + CPMAO + CPGAO + CPARO + CPACO
F
F
      SLD422 = CPI2 + CPGLU + CPXYE + CPSSL + CPARS + CPGAS + CPMAS +
               (CPCLS*CSLCONC) + CPCNT + CPWNT + OLG422
F
F
      OLG311 = CLGLO + CLCLB + CLXYO + CLMAO + CLGAO + CLARO + CLACO
F
      SLD311 = CLI2 + CLGLU + CLXYE + CLSSL + CLARS + CLGAS + CLMAS +
               (CLCLS*CSLCONC) + CLCNT + CLWNT + OLG311
F
F
      OLG303 = SFGLO + SFCLB + SFXYO + SFMAO + SFGAO + SFARO + SFACO
F
      SLD303 = SFI2 + SFGLU + SFXYE + SFSSL + SFARS + SFGAS + SFMAS +
               (SFCLS*CSLCONC) + SFCNT + SFWNT + OLG303
F
F
      OLG304 = SPGLO + SPCLB + SPXYO + SPMAO + SPGAO + SPARO + SPACO
      SLD304 = SPI2 + SPGLU + SPXYE + SPSSL + SPARS + SPGAS + SPMAS +
F
F
               (SPCLS*CSLCONC) + SPCNT + SPWNT + OLG304
   TTL calc are the total flows of each stream
C
F
      TTL232 = HF1 + HS1
      TTL219 = RV2 + RI2
F
      TTL401 = CFF1 + CFS1
F
      TTL422 = CPF1 + CPS1
F
F
      TTL311 = CLF1 + CLS1
F
      TTL303 = SFF1 + SFS1
F
      TTL304 = SPF1 + SPS1
      CNC219 = SLD219 / TTL219
F
;F
      OTHSLD = SLD232 - SLD219 +SLD422+SLD311-SLD303+SLD304
F
      OTHSLD = SLD232 - SLD219 - SLD401 + SLD422 + SLD311 - SLD303
F
             + SLD304
       OTHTTL = TTL232 - TTL219 +TTL422+TTL311-TTL303+TTL304
;F
      OTHTTL = TTL232 - TTL219 - TTL401 + TTL422 + TTL311 - TTL303
F
F
             + TTL304
      CAL219 = ((CONC2 * OTHTTL) - OTHSLD) / (CNC219 - CONC2)
F
F
      AV2 = CAL219 - RI2
С
  CONC3: Cellulose + Xylose concentration in Stream 431
C
  AV3: Recycle Flow Stream 430
C
C
F
      CONC3 = 0.04
      AV3 = ((ST3X + ST3C + R3X + R3C) / CONC3)
F
F
          - (CI3 + CV3 + RI3)
C
  CONC4: Cellulose + Xyloxe in Stream 412A
C
  AV4: Recycle Flow Stream 430
C
C
      CONC4 = 0.04
F
```

```
AV4 = ((ST4C + R4C) / CONC4) - (CI4 + CV4 + RI4)
c Recalc Concentrations and write to the history file
C
      CNCla = CI1 / (CV1 + CI1 + STV1)
;F
      CNC1 = CI1 / (CV1 + CI1 + STV1 + STV2)
;F
      CNC1b = HPS1 / (HP1 + HPS1)
;F
;F
      CNC2 = (SLD232 + SLD422 + SLD311 - SLD303 + SLD304)
            / (TTL232 +TTL422+TTL311-TTL303+TTL304)
;F
;F
      CNC2b = (RI2 + CPS1 + CLS1 - SFS1 + SPS1)
            / (TTL232 +TTL422+TTL311-TTL303+TTL304)
;F
F
     CNC2 = (SLD232 - SLD401 + SLD422 + SLD311 - SLD303 + SLD304)
           / (TTL232 - TTL401 + TTL422 + TTL311 - TTL303 + TTL304)
F
     CNC2b = (RI2 - CFS1 + CPS1 + CLS1 - SFS1 + SPS1)
F
F
     1 / (TTL232 - TTL401 + TTL422 + TTL311 - TTL303 + TTL304)
F
     CNC3 = (ST3X + ST3C + R3X + R3C)
     1 / (CI3 + CV3 + RI3 + AV3)
F
F
     CNC4 = (ST4C + R4C) / (CI4 + CV4 + RI4 + AV4)
C
     WRITE (NHSTRY, 101) CNC2, CNC3, CNC4, CNC2b
F 101 FORMAT(' RECYCLE Fortran Block Results',/,
             ' Specified Concentrations',/,
            ' SSCF Effective Solids Conc:
F
            ' Cellulase Seed Feed Cellulose+Xylose (431): ',g12.5,/,
F
            ' Cellulase Ferm Cellulose Conc (412A):
F
                                                           ',g12.5,/,/,
F
            ' Other Concentrations',/,
            ' SSCF Insoluble Solids Conc:
F
                                                            ',g12.5)
С
c Calculate Splits for Block RWSPLT
С
;F
      F1=AV1/(AV1+AV2+AV3+AV4)
F
     F2=AV2/(AV2+AV3+AV4)
F
     F3=AV3/(AV2+AV3+AV4)
F
     F4=1-F2-F3
С
c Calculate Make-up Water, Stream 604
C
F
     RWTAV = RWAT + RWT3
     FWAT= AV2 + RI2 + AV3 + RI3 + AV4 + RI4 - RWTAV
F
      EXECUTE BEFORE FWMIX
FORTRAN RECCOND
; DEFINE VARIABLES FOR RECYCLE WATER STREAM #1. THIS STREAM
; CONTROLS THE SOLIDS CONCENTRATION IN THE IMPREGNATOR.
     DEFINE CI1 STREAM-VAR STREAM=214A SUBSTREAM=CISOLID
                VARIABLE=MASS-FLOW
     DEFINE STV1 STREAM-VAR STREAM=215 SUBSTREAM=MIXED
                 VARIABLE=MASS-FLOW
     DEFINE STV2 STREAM-VAR STREAM=216 SUBSTREAM=MIXED
                 VARIABLE=MASS-FLOW
     DEFINE ACV1 STREAM-VAR STREAM=212 SUBSTREAM=MIXED
                VARIABLE=MASS-FLOW
     DEFINE FDV1 STREAM-VAR STREAM=101 SUBSTREAM=MIXED
                                                                       &
                VARIABLE=MASS-FLOW
     DEFINE AV1 BLOCK-VAR BLOCK=E501SPT SENTENCE=MASS-FLOW
                  VARIABLE=FLOW ID1=211
c CONC1: Solids Concentration in Impregnator Feed, Stream 214A
```

```
C
F
      CONC1 = 0.3091
      CV1 = ((1.-CONC1)/CONC1) * CI1 - STV1 - STV2
F
C
C
  AV1 Recycle water flow (Stream 211)
C
F
     AV1 = CV1 - (ACV1 + FDV1)
С
F
     CNC1a = CI1 / (CV1 + CI1 + STV1)
      CNC1 = CI1 / (CV1 + CI1 + STV1 + STV2)
    READ-VARS CI1 STV1 STV2 ACV1 FDV1
    WRITE-VARS AV1
    EXECUTE BEFORE E501MIX
FORTRAN CODCALC1
C Calculates the incomming COD
        COMMON/ WWLOAD/ CODTOT, BODTOT, CODDAY, BODDAY
    DEFINE GLUC MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=GLUCOSE
    DEFINE XYLO MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=XYLOSE
    DEFINE UNKN MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=UNKNOWN
    DEFINE SOLS MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=SOLSLDS
    DEFINE ARAB MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=ARABINOS
    DEFINE GALA MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=GALACTOS
    DEFINE XMANS MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=MANNOSE
    DEFINE GLUO MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=GLUCOLIG
    DEFINE CELB MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=CELLOB
    DEFINE XYLG MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=XYLOLIG
    DEFINE XMANO MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=MANOLIG
    DEFINE GALO MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=GALAOLIG
    DEFINE ARAO MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=ARABOLIG
    DEFINE ACEO MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=ACETOLIG
    DEFINE XYLL MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=XYLITOL
    DEFINE ETOH MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=ETHANOL
    DEFINE FURF MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=FURFURAL
    DEFINE XHMF MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=HMF
    DEFINE CH4 MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=CH4
    DEFINE XLACI MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=LACID
    DEFINE AACI MASS-FLOW STREAM=613 SUBSTREAM=MIXED
        COMPONENT=AACID
    DEFINE GLYC MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
```

```
COMPONENT=GLYCEROL
    DEFINE SUCC MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=SUCCACID
    DEFINE DENA MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=DENAT
    DEFINE XOIL MASS-FLOW STREAM=613 SUBSTREAM=MIXED &
        COMPONENT=OIL
    DEFINE XNNH4 MASS-FLOW STREAM=613 SUBSTREAM=CISOLID &
        COMPONENT=NH4ACET
C SET THE COD FOR COMPONENTS (KG O2/KG COMPONENT)
C THE COD VALUES ARE THE THEORETICAL O2 REQUIRED FOR COMBUSTION, BUT
C ONLY FOR SOLUBLE COMPONENTS. INSOLUBLE COMPONENTS ARE ASSUMED TO
C BE NON-REACTIVE AND ARE NOT CONTAINED IN THE CALCULATION.
С
  SOLUBLE C-CONTAINING COMPOUNDS
F
      CGLUC = 1.07
F
      CXYLO = 1.07
      CUNKN = 1.07
F
      CSOLS = 0.71
F
F
      CETOH = 2.09
F
      CARAB = 1.07
F
      CGALA = 1.07
F
      CMANS = 1.07
      CGLUO = 1.07
F
F
      CCELB = 1.07
F
      CXYLG = 1.07
F
      CMANO = 1.07
F
      CGALO = 1.07
F
      CARAO = 1.07
F
      CXYLL = 1.22
F
      CFURF = 1.67
F
      CHMF = 1.52
F
      CCH4 = 4.0
F
      CLACI = 1.07
F
      CAACI = 1.07
F
      CGLYC = 1.22
F
      CSUCC = 0.95
F
      CDENA = 3.52
      COIL = 2.89
F
F
      CACEO = 1.07
F
      CNNH4 = 1.143
С
C
С
  CALCULATE HOURLY COD LOADINGS (KG/HR)
С
F
     CODTOT = GLUC*CGLUC + XYLO*CXYLO + UNKN*CUNKN + SOLS*CSOLS +
F
               GALA*CGALA + XMANS*CMANS + ARAB*CARAB + GLUO*CGLUO +
F
               CELB*CCELB + XYLG*CXYLG + XMANO*CMANO + GALO*CGALO +
F
               ARAO*CARAO + XYLL*CXYLL + ETOH*CETOH + FURF*CFURF +
               XHMF*CHMF + CH4*CCH4 + XACI*CLACI + AACI*CAACI +
F
F
               GLYC*CGLYC + SUCC*CSUCC + DENA*CDENA + XOIL*COIL +
F
               ACEO*CACEO + CNNH4*XNNH4
С
С
C CALCULATE HOURLY BOD LOADINGS (KG/HR)
C
      BODCOD = 0.70
C BODCOD IS THE BOD/COD RATIO AND WAS PROVIDED BY J. RUOCCO 7/29/98
C THIS VALUE IS WITHIN THE RANGE (0.45-0.78) PROVIDED IN PERRY'S
```

```
C 7TH EDITION, PG. 25-62.
C
F
      BODTOT= BODCOD*CODTOT
С
C
C
  CALCULATE DAILY BOD AND COD LOADINGS (LB/DAY)
C
       CODDAY = CODTOT*2.205*24.
F
F
       BODDAY = BODTOT*2.205*24.
C 2.205 IS LB/KG AND 24 HR/DAY TO CONVERT KG/HR TO LB/DAY
C
     WRITE ANSWERS TO THE HISTORY FILE
C
F
      WRITE(NHSTRY, *)'CODTOT, BODTOT= ',CODTOT, BODTOT
F
      WRITE(NHSTRY, *) 'CODDAY, BODDAY= ',CODDAY, BODDAY
C
    READ-VARS GLUC
FORTRAN CODCALC2
C Calculates COD after ANEROBIC and before AEROBIC
        COMMON/ WWLOD2/ COD2, BOD2, CODDY2, BODDY2
    DEFINE GLUC MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=GLUCOSE
    DEFINE XYLO MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=XYLOSE
    DEFINE UNKN MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=UNKNOWN
    DEFINE SOLS MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=SOLSLDS
    DEFINE ARAB MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=ARABINOS
    DEFINE GALA MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=GALACTOS
    DEFINE XMANS MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=MANNOSE
    DEFINE GLUO MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=GLUCOLIG
    DEFINE CELB MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=CELLOB
    DEFINE XYLG MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=XYLOLIG
    DEFINE XMANO MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=MANOLIG
    DEFINE GALO MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=GALAOLIG
    DEFINE ARAO MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=ARABOLIG
    DEFINE ACEO MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=ACETOLIG
    DEFINE XYLL MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=XYLITOL
    DEFINE ETOH MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=ETHANOL
    DEFINE FURF MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=FURFURAL
    DEFINE XHMF MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=HMF
    DEFINE CH4 MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=CH4
```

```
DEFINE XLACI MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=LACID
    DEFINE AACI MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=AACID
    DEFINE GLYC MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=GLYCEROL
    DEFINE SUCC MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
        COMPONENT=SUCCACID
    DEFINE DENA MASS-FLOW STREAM=618 SUBSTREAM=MIXED &
COMPONENT=DENAT
    DEFINE XOIL MASS-FLOW STREAM=618 SUBSTREAM=MIXED
        COMPONENT=OIL
    DEFINE XNNH4 MASS-FLOW STREAM=618 SUBSTREAM=CISOLID &
        COMPONENT=NH4ACET
С
C SET THE COD FOR COMPONENTS (KG O2/KG COMPONENT)
C THE COD VALUES ARE THE THEORETICAL O2 REQUIRED FOR COMBUSTION, BUT
C ONLY FOR SOLUBLE COMPONENTS. INSOLUBLE COMPONENTS ARE ASSUMED TO
C BE NON-REACTIVE AND ARE NOT CONTAINED IN THE CALCULATION.
C
 SOLUBLE C-CONTAINING COMPOUNDS
F
      CGLUC = 1.07
F
      CXYLO = 1.07
F
      CUNKN = 1.07
F
      CSOLS = 0.71
F
      CETOH = 2.09
F
      CARAB = 1.07
F
      CGALA = 1.07
F
      CMANS = 1.07
F
      CGLUO = 1.07
F
      CCELB = 1.07
F
      CXYLG = 1.07
F
      CMANO = 1.07
F
      CGALO = 1.07
F
      CARAO = 1.07
F
      CXYLL = 1.22
F
      CFURF = 1.67
F
      CHMF = 1.52
      CCH4 = 4.0
F
      CLACI = 1.07
F
F
      CAACI = 1.07
F
      CGLYC = 1.22
F
      CSUCC = 0.95
F
      CDENA = 3.52
F
      COIL = 2.89
F
      CACEO = 1.07
F
      CNNH4 = 1.143
С
С
С
  CALCULATE HOURLY COD LOADINGS (KG/HR)
С
F
     COD2
            = GLUC*CGLUC + XYLO*CXYLO + UNKN*CUNKN + SOLS*CSOLS +
F
               GALA*CGALA + XMANS*CMANS + ARAB*CARAB + GLUO*CGLUO +
F
               CELB*CCELB + XYLG*CXYLG + XMANO*CMANO + GALO*CGALO +
F
               ARAO*CARAO + XYLL*CXYLL + ETOH*CETOH + FURF*CFURF +
F
              XHMF*CHMF + CH4*CCH4 + XLACI*CLACI + AACI*CAACI +
F
              GLYC*CGLYC + SUCC*CSUCC + DENA*CDENA + XOIL*COIL +
    5
F
              ACEO*CACEO + CNNH4*XNNH4
С
С
```

```
CALCULATE HOURLY BOD LOADINGS (KG/HR)
С
F
       BODCOD = 0.70
C BODCOD IS THE BOD/COD RATIO AND WAS PROVIDED BY J. RUOCCO 7/29/98
C THIS VALUE IS WITHIN THE RANGE (0.45-0.78) PROVIDED IN PERRY'S
C 7TH EDITION, PG. 25-62.
      BOD2 = BODCOD*COD2
F
С
C
С
  CALCULATE DAILY BOD AND COD LOADINGS (LB/DAY)
C
F
       CODDY2 = COD2*2.205*24.
F
      BODDY2 = BOD2*2.205*24.
C
C 2.205 IS LB/KG AND 24 HR/DAY TO CONVERT KG/HR TO LB/DAY
C
C
     WRITE ANSWERS TO THE HISTORY FILE
C
      WRITE(NHSTRY, *)'COD2, BOD2= ',COD2, BOD2
F
F
      WRITE(NHSTRY, *)'CODDY2, BODDY2=',CODDY2, BODDY2
C
    READ-VARS GLUC
FORTRAN CODEND
C Calculates the final COD level in the waste water
        COMMON/ WWLOD3/ COD3, BOD3, CODDY3, BODDY3
    DEFINE GLUC MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=GLUCOSE
    DEFINE XYLO MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=XYLOSE
    DEFINE UNKN MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=UNKNOWN
    DEFINE SOLS MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=SOLSLDS
    DEFINE ARAB MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=ARABINOS
    DEFINE GALA MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=GALACTOS
    DEFINE XMANS MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
        COMPONENT=MANNOSE
    DEFINE GLUO MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=GLUCOLIG
    DEFINE CELB MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=CELLOB
    DEFINE XYLG MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=XYLOLIG
    DEFINE XMANO MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
        COMPONENT=MANOLIG
    DEFINE GALO MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=GALAOLIG
    DEFINE ARAO MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=ARABOLIG
    DEFINE ACEO MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=ACETOLIG
    DEFINE XYLL MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=XYLITOL
    DEFINE ETOH MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=ETHANOL
    DEFINE FURF MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
```

```
COMPONENT=FURFURAL
    DEFINE XHMF MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
        COMPONENT=HMF
    DEFINE CH4 MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
        COMPONENT=CH4
    DEFINE XLACI MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
        COMPONENT=LACID
    DEFINE AACI MASS-FLOW STREAM=624 SUBSTREAM=MIXED &
        COMPONENT=AACID
    DEFINE GLYC MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=GLYCEROL
    DEFINE SUCC MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=SUCCACID
    DEFINE DENA MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=DENAT
    DEFINE XOIL MASS-FLOW STREAM=624 SUBSTREAM=MIXED
        COMPONENT=OIL
    DEFINE XNNH4 MASS-FLOW STREAM=624 SUBSTREAM=CISOLID &
        COMPONENT=NH4ACET
C SET THE COD FOR COMPONENTS (KG 02/KG COMPONENT)
C THE COD VALUES ARE THE THEORETICAL O2 REQUIRED FOR COMBUSTION, BUT
C ONLY FOR SOLUBLE COMPONENTS. INSOLUBLE COMPONENTS ARE ASSUMED TO
C BE NON-REACTIVE AND ARE NOT CONTAINED IN THE CALCULATION.
С
   SOLUBLE C-CONTAINING COMPOUNDS
F
       CGLUC = 1.07
F
       CXYLO = 1.07
F
       CUNKN = 1.07
       CSOLS = 0.71
F
      CETOH = 2.09
F
F
      CARAB = 1.07
      CGALA = 1.07
F
F
      CMANS = 1.07
F
      CGLUO = 1.07
F
      CCELB = 1.07
F
      CXYLG = 1.07
F
      CMANO = 1.07
F
      CGALO = 1.07
F
      CARAO = 1.07
F
      CXYLL = 1.22
F
      CFURF = 1.67
F
      CHMF = 1.52
      CCH4 = 4.0
F
      CLACI = 1.07
F
F
      CAACI = 1.07
F
      CGLYC = 1.22
F
      CSUCC = 0.95
F
       CDENA = 3.52
       COIL = 2.89
F
       CACEO = 1.07
F
F
       CNNH4 = 1.143
С
С
C
  CALCULATE HOURLY COD LOADINGS (KG/HR)
С
F
             = GLUC*CGLUC + XYLO*CXYLO + UNKN*CUNKN + SOLS*CSOLS +
F
               GALA*CGALA + XMANS*CMANS + ARAB*CARAB + GLUO*CGLUO +
F
               CELB*CCELB + XYLG*CXYLG + XMANO*CMANO + GALO*CGALO +
F
               ARAO*CARAO + XYLL*CXYLL + ETOH*CETOH + FURF*CFURF +
```

```
XHMF*CHMF + CH4*CCH4 + XLACI*CLACI + AACI*CAACI +
               GLYC*CGLYC + SUCC*CSUCC + DENA*CDENA + XOIL*COIL
F
F
               ACEO*CACEO + CNNH4*XNNH4
C
С
  CALCULATE HOURLY BOD LOADINGS (KG/HR)
      BODCOD = 0.70
C BODCOD IS THE BOD/COD RATIO AND WAS PROVIDED BY J. RUOCCO 7/29/98
C THIS VALUE IS WITHIN THE RANGE (0.45-0.78) PROVIDED IN PERRY'S
C 7TH EDITION, PG. 25-62.
      BOD3 = BODCOD*COD3
F
С
С
C
 CALCULATE DAILY BOD AND COD LOADINGS (LB/DAY)
С
F
      CODDY3 = COD3*2.205*24.
F
      BODDY3 = BOD3*2.205*24.
C 2.205 IS LB/KG AND 24 HR/DAY TO CONVERT KG/HR TO LB/DAY
С
     WRITE ANSWERS TO THE HISTORY FILE
С
F
     WRITE(NHSTRY,*)'COD3, BOD3= ',COD3, BOD3
F
     WRITE(NHSTRY, *)'CODDY3, BODDY3=',CODDY3, BODDY3
С
   READ-VARS GLUC
FORTRAN WWNUTR1
       COMMON/ WWLOAD/ CODTOT, BODTOT, CODDAY, BODDAY
 DEFINE WWTNUT STREAM-VAR STREAM=630 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
C
F
      WWTFAC = 3.675E-2
С
C THE AMOUNT OF PHOSPHORIC ACID, UREA, MICRONUTRIENTS AND CAUSTIC
С
F
      WWTNUT = WWTFAC*CODTOT
С
    EXECUTE AFTER FORTRAN CODCALC1
FORTRAN WWNUTR2
       COMMON/ WWLOD2/ COD2, BOD2, CODDY2, BODDY2
  DEFINE WWTNUT STREAM-VAR STREAM=631 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
C
F
       WWTFAC = 1.701E-3
C WWTFAC IS THE AMOUNT OF POLYMER ADDED LB/LB COD TO THE AEROBIC
C SYSTEM. IT IS THE AVERAGE VALUE PROVIDED BY J. RUOCCO FOR THE
C 3 SYSTEM DESIGNS (ENZYME, COUNTERCURRENT AND SOFTWOOD)
C POLYMER IS MODELLED AS THE COMPONENT WNUTR
F
        WWTNUT = WWTFAC*COD2
С
    EXECUTE AFTER FORTRAN CODCALC2
SENSITIVITY MASSFLOW
     COMMON /FRMSET/ SSFDAY, SSFVES, SSFVOL, SSFWV, PMPFLO
      COMMON /CLSSET/ CLYLD, CLPROD, CLVES, CLVOL, CLWV
```

```
COMMON /WWLOAD/ CODTOT, BODTOT, CODDAY, BODDAY
      COMMON /WWLOD2/ COD2, BOD2, CODDY2, BODDY2
DEFINE T612
             STREAM-VAR STREAM=612 SUBSTREAM=MIXED VARIABLE=TEMP
DEFINE T613
             STREAM-VAR STREAM=613 SUBSTREAM=MIXED VARIABLE=TEMP
DEFINE OHX602 INFO-VAR INFO=HEAT VARIABLE=DUTY STREAM=OH602
     DT=((T612-T1040)-(T613-T1045))/DLOG((T612-T1040)/(T613-T1045))
     DT = DABS(DT * 1.8)
     U = 300.
C Convert from cal/s to BTU/hr
     Q = QHX602 * 14.2869
C Area in square feet
     A602 = DABS(Q) / (U * DT)
F
F
     WRITE(NHSTRY, 106)DT, Q, A602
F 106 FORMAT(' HX Calc Results',/,
         ' DT = ',g12.5,/,
F
   1
            'Q = ',g12.5,/,
F
            'A602 = ',g12.5)
F
; WWT Volume Calculations
; THIS CODE CALCULATES THE SIZE OF THE ANAEROBIC DIGESTOR
  AND THE AEROBIC SYSTEM.
     DEFINE TOTANA STREAM-PROP STREAM=632 PROPERTY=MASSFLW
     DEFINE TOTAER STREAM-PROP STREAM=618 PROPERTY=MASSFLW
C
F
      ANLOAD = 12.0
F
      AELOAD = 0.55
C
C ANLOAD AND AELOAD ARE THE SPACE LOADINGS IN G/L/D FOR THE ANAEROBIC
C AND AEROBIC SYSTEMS, RESPECTIVELY
C BOTH VALUES WERE PROVIDED BY J. RUOCCO
       ANCONC = (CODTOT*1000.)/TOTANA
F
F
      AECONC = (COD2*1000.)/TOTAER
C ANCONC AND AECONC ARE THE COD CONCENTRATIONS (G/L)
C THESE CALCULATIONS ASSUME THAT THE STREAMS HAVE THE SAME DENSITY
C AS FOR WATER (1 KG/L).
F
      ANRT = (ANCONC*24.0)/ANLOAD
F
       AERT = (AECONC*24.0)/AELOAD
C
C ANRT AND AERT ARE THE RESIDENCE TIME (H) FOR THE ANAEROBIC AND
C AEROBIC SYSTEMS, RESPECTIVELY
      ANVOL = (TOTANA*ANRT)/3.7854
F
F
      AEVOL = (TOTAER*AERT)/3.7854
C ANVOL AND AEVOL ARE THE VOLUMES (GAL) OF THE ANAEROBIC AND AEROBIC
C SYSTEMS, RESPECTIVELY.
C THIS CALCULATION ASSUMES THAT THE STREAMS HAVE THE SAME DENSITY AS
C WATER (1 KG/L).
C
      WRITE(NHSTRY,*)'ANVOL,AEVOL= ',ANVOL, AEVOL
C Base Case of 4,569,250 Gal of Aerobic Lagoon,
C Requires 16 Lagoon Aerators
C or 285578 Gallons per Aerator
       IWWTAG = AEVOL / 285578. + 1
       WRITE(NHSTRY,'('' Num of Aerators: '',g12.5)')IWWTAG
F
```


Attachment 2 Anaerobic Digestion Subroutine

```
C$ #3 BY: VLP DATE: 26-JUL-18-AUG-1998 DEVELOPED WWT MODEL
C$ #2 BY: ANAVI DATE: 15-NOV-1994 FIXED TYPO INI(NINT)-->INT(NINT)
C$ #1 BY: ANAVI DATE: 1-JUL-1994 NEW FOR USER MODELS
С
      User Unit Operation Model for an Anaerobic Digestor
C
      SUBROUTINE USRANR (NSIN,
                                   NINFI,
                                            SIN1,
                                                    SIN2,
                                                              SIN3,
     2
                                   SINFI,
                                            NSOUT,
                                                    NINFO,
                                                              SOUT1,
                          SIN4,
     3
                                            SOUT4,
                                   SOUT3,
                          SOUT2,
                                                    SINFO,
                                                              NSUBS,
     4
                                                    INT,
                          IDXSUB,
                                   ITYPE,
                                            NINT,
                                                              NREAL,
     5
                                            NPO,
                          REAL,
                                   IDS,
                                                    NBOPST,
                                                              NIWORK,
     6
                          IWORK,
                                   NWORK,
                                                    NSIZE,
                                            WORK,
                                                              SIZE,
                          INTSIZ,
                                   LD)
C
      IMPLICIT REAL*8 (A-H, O-Z)
C
      DIMENSION SIN1(1), SIN2(1), SIN3(1), SIN4(1), SOUT1(1),
     2
                SOUT2(1), SOUT3(1), SOUT4(1), IDXSUB(NSUBS),
     3
                ITYPE(NSUBS), INT(NINT), REAL(NREAL), IDS(2,13),
                NBOPST(6,NPO), IWORK(NIWORK), WORK(NWORK),
     4
                SIZE(NSIZE), INTSIZ(NSIZE)
C
                           , IDXAI(99) , XCI(99) , IDXCI(99) ,
      DIMENSION XAI(99)
                XAO(99) , IDXAO(99) , XCO(99) , IDXCO(99) , IPROG(2) , RETN(228) , IRETN(6) , NFLAGW(11)
     2.
     3
С
C
      COMMON /USER/ RMISS, IMISS, NGBAL, IPASS, IRESTR,
                     ICONVG, LMSG, LPMSG, KFLAG, NHSTRY,
     2.
                    NRPT, NTRMNL, ISIZE
     3
C
      COMMON /WWLOAD/ CODTOT, BODTOT, CODDAY, BODDAY
С
C
      COMMON /NCOMP/ NCC
С
      COMMON /STWORK/ NRETN, NIRETN, NHXF, NHYF, NWYF,
                       NSTW, KK1, KK2, KZ1, KZ2,
     2
                       KAI, KA2, KRET, KRSC, MF,
     3
                       MX, MX1, MX2, MY, MCS,
     4
                       MNC, MHXF, MHYF, MWY, MRETN,
     5
                       MIM, MIC, MIN, MPH, MIRETN,
     6
                       MKBAS, MKPHAS, MTAPP, MKBASS, MTAPPS,
     7
                       KEXT, KLNK, KFOUT, KFOUT1, KPHV,
     8
                       KPHL, KLNGM, MF1, MFST, MSTOIL,
     9
                       MSTOIS, HV, HL, HL1, HL2,
                       SV, SL, SL1, SL2, VV,
                       VL, VL1, VL2, XMWV, XMWL,
     1
     2
                       XMWL1, XMWL2, HCS, HNCS, SSALT,
     3
                       VSALT, MSTOI, MLNKL, MLNKS, MLNKIN,
     4
                       MZWK, MST, MIEXST, MIZWK, HSALT,
     5
                       FSALT, RATIO, MIPOLY, MRPOLY
C
      COMMON /STWKWK/ LRSTW, LISTW, NCPM, NCPCS, NCPNC, NTRIAL,
     1
                       IDUM3(2), TCALC, PCALC, VCALC, QCALC, BETCAL,
```

```
RDUM(21)
    COMMON /IDXCC / IDXCC(1)
    COMMON /IDXNCC/ IDXNCC(1)
    COMMON / MW / XMW(1)
    COMMON /RPTGLB/ IREPFL, ISUB(10)
    COMMON /PLEX/ IB(1)
    DIMENSION B(1)
    EOUIVALENCE (IB(1),B(1))
С
С
    VARIABLES IN ARGUMENT LIST
С
С
                                 DESCRIPTION
    VAR
             I/O
                    TYPE
                           DIM
С
              ---
                     ----
                            ---
С
    SINFO
              0
                     R
                                   OUTLET WORK STREAM VECTOR
С
    SIN1
              I/O
                     R
                                   INLET WASTEWATER STREAM VECTOR
С
    SOUT1
              0
                     R
                                   OUTLET STREAM
С
   NSUBS
              I
                     I
                                   NUMBER OF SUBSTREAMS
                    I NSUBS
I NSUBS
С
   IDXSUB
              I
                                   SUBSTREAM INDEX VECTOR
С
                                   SUBSTREAM TYPE VECTOR
   ITYPE
              I
С
   NINT
                     I
                                   LENGTH OF INPUT VECTOR
              I
                    I NINT
С
   INT
             I/O
                                  INPUT INTEGER VECTOR
С
   NREAL
                     I
                                   LENGTH OF INPUT REAL VECTOR
              I
                    R NREAL 1 2, 13
C
              I/O
   REAL
                                  INPUT REAL VECTOR
C
              I
                                  ID VECTOR
    TDS
С
   NPO
              I
                     Ι
                                   NUMBER OF PHYSICAL PROPERTY
OPTIONS
    NBOPST I I 3, NPO
                                  PHYSICAL PROPERTY OPTION SET
POINTER
    NIWORK I I
                                   LENGTH OF INPUT INTEGER WORK
VECTOR
             I I
I I
                                   INPUT INTEGER WORK VECTOR
C
    IWORK
                          NIWORK
C
   NWORK
                                   LENGTH OF INPUT REAL WORK VECTOR
                    R NWORK
C
                                  INPUT REAL WORK VECTOR
   WORK
              I
С
                    R
                                   COD CONVERSION (FRAC)
   REAL(1)
              I
С
   REAL(2)
                     R
                                   FRACTION CH4 YIELD ON COD
              I
С
                     R
                                   FRACTION CELL MASS YIELD ON COD
   REAL(3)
              I
С
   REAL(4)
              I
                     R
                                   FRACTION OF CH4 IN OUTLET GAS
С
                                   FRACTION OF SOLUBLE SULFATE
   REAL(5)
              I
                     R
С
                                   COMPONENTS TO H2S
С
  *******************
С
С
С
           SET COMPONENT INDICES BY COMPONENT ID
С
  С
С
С
    THIS ALLOWS MANIPULATION OF THE COMPONENTS BY THE INDICE
С
    RATHER THAN THE POSITION IN THE COMPONENT MATRIX.
С
  *************************
С
С
С
          IN-HOUSE DATABASE COMPONENTS
С
  NGLUC = KCCIDC('GLUCOSE')
    NCELU = KCCIDC('CELLULOSE')
    NXYLO = KCCIDC('XYLOSE')
    NXYLA = KCCIDC('XYLAN')
    NLIGN = KCCIDC('LIGNIN')
    NCELL = KCCIDC('CELLULASE')
```

```
NBIOM = KCCIDC('BIOMASS')
    NZYMO = KCCIDC('ZYMO')
    NUNKN = KCCIDC('UNKNOWN')
    NSOLS = KCCIDC('SOLSLDS')
    NGYPS = KCCIDC('GYPSUM')
C
С
  *******************
С
С
          IN-HOUSE DATABASE ALIASES
С
  ******************
С
С
    NARAB = KCCIDC('ARABINOS')
    NGALA = KCCIDC('GALACTOS')
    NMANS = KCCIDC('MANNOSE')
    NARAN = KCCIDC('ARABINAN')
    NMANN = KCCIDC('MANNAN')
    NGALN = KCCIDC('GALACTAN')
    NGLUO = KCCIDC('GLUCOLIG')
    NCELB = KCCIDC('CELLOB')
    NXYLG = KCCIDC('XYLOLIG')
    NTAR = KCCIDC('TAR')
    NMANO = KCCIDC('MANOLIG')
    NGALO = KCCIDC('GALAOLIG')
    NARAO = KCCIDC('ARABOLIG')
    NACET = KCCIDC('ACETATE')
    NACEO = KCCIDC('ACETOLIG')
    NXYLL = KCCIDC('XYLITOL')
С
  С
С
С
          SOLIDS DATABASE
С
  С
    NCASO = KCCIDC('CASO4')
    NCAH2 = KCCIDC('CAH2O2')
    NASH = KCCIDC('ASH')
С
С
  C
C
          PURECOMPS DATABASE
С
  С
    NETOH = KCCIDC('ETHANOL')
    NH2O = KCCIDC('H2O')
    NFURF = KCCIDC('FURFURAL')
    NHMF = KCCIDC('HMF')
    NH2SO = KCCIDC('H2SO4')
    NN2 = KCCIDC('N2')
    NCO2 = KCCIDC('CO2')
    NO2 = KCCIDC('O2')
    NCH4 = KCCIDC('CH4')
    NNO = KCCIDC('NO')
    NNO2 = KCCIDC('NO2')
    NNH3 = KCCIDC('NH3')
    NLACI = KCCIDC('LACID')
    NAACI = KCCIDC('AACID')
    NNH40 = KCCIDC('NH4OH')
```

```
NNH4S = KCCIDC('NH4SO4')
     NNH4A = KCCIDC('NH4ACET')
     NGLYC = KCCIDC('GLYCEROL')
     NSUCC = KCCIDC('SUCCACID')
    NDENA = KCCIDC('DENAT')
    NOIL = KCCIDC('OIL')
    NCSL = KCCIDC('CSL')
    NCNUT = KCCIDC('CNUTR')
    NWNUT = KCCIDC('WNUTR')
    NSO2 = KCCIDC('SO2')
    NH2S = KCCIDC('H2S')
С
С
  С
С
         DEFINE THE OFFSETS FOR THE SUBSTREAMS
С
  С
С
С
     S1 IS MIXED AND S2 IS CISOLID.
С
    S1=IDXSUB(1) - 1
     S2=IDXSUB(2) - 1
С
  ******************
С
С
С
         FIND THE MOLECULAR WEIGHT FOR COMPONENTS
С
        IN THE MIXED SS, CELL MASS AND (NH4)2SO4
С
  LMW = IFCMNC ('MW')
     CMW = B(LMW + NBIOM)
     GMW = B(LMW + NGLUC)
    XYMW = B(LMW + NXYLO)
     UMW = B(LMW + NUNKN)
     SMW = B(LMW + NSOLS)
     AMW = B(LMW + NARAB)
     GAMW = B(LMW + NGALA)
     WAMW = B(LMW + NMANS)
     GOMW = B(LMW + NGLUO)
     CBMW = B(LMW + NCELB)
     XGMW = B(LMW + NXYLG)
     WOMW = B(LMW + NMANO)
     GLMW = B(LMW + NGALO)
     AOMW = B(LMW + NARAO)
     AEMW = B(LMW + NACEO)
    XLMW = B(LMW + NXYLL)
     EMW = B(LMW + NETOH)
     FMW = B(LMW + NFURF)
     HMW = B(LMW + NHMF)
     C4MW = B(LMW + NCH4)
     ALMW = B(LMW + NLACI)
     AAMW = B(LMW + NAACI)
     GYMW = B(LMW + NGLYC)
     SUMW = B(LMW + NSUCC)
     DMW = B(LMW + NDENA)
     WLMW = B(LMW + NOIL)
     WMW = B(LMW + NH2O)
     SAMW = B(LMW + NH2SO)
     W1MW = B(LMW + NN2)
     CO2MW = B(LMW + NCO2)
```

```
W2MW = B(LMW + NO2)
     W3MW = B(LMW + NNO)
     W4MW = B(LMW + NNO2)
     AMMW = B(LMW + NNH3)
     CSMW = B(LMW + NCSL)
     CNMW = B(LMW + NCNUT)
     WNMW = B(LMW + NWNUT)
     WSOMW = B(LMW + NSO2)
     HSMW = B(LMW + NH2S)
     ASMW = B(LMW + NNH4S)
     AMAMW = B(LMW + NNH4A)
  *******************
С
С
С
         COPY INLET STREAM TO OUTLET STREAM
С
  С
С
C Copy Each Component, NCC - Number Conventional Components
C NCC+1 Total Flow
C S1 is MIXED substream, S2 is CISOLID
     DO 100 K = 1, NCC+1
       SOUT1(S1+K) = SIN1(S1+K)
       SOUT1(S2+K) = SIN1(S2+K)
       WRITE(NHSTRY,*)'K (Component No.) = ',K
       WRITE(NHSTRY,*)'SOUT1(S1) MIXED (kmol/s) = ',SOUT1(S1+K)
       WRITE(NHSTRY, *)'SOUT1(S2) CISOLID (kmol/s) = ',SOUT1(S2+K)
 100 CONTINUE
С
C Copy Stream Properties
C NCC+2 Temperature (K)
C NCC+3 Pressure (Pa)
C NCC+4 Enthalpy (J/Kg)
C NCC+5 Molar Vapor Fraction
C NCC+6 Molar Liquid Fraction
C NCC+7 Entropy (J/Kg K)
C NCC+8 Density (Kg/m^3)
C NCC+9 Molecular Weight
     DO 200 K=NCC+2, NCC+9
       SOUT1(S1+K) = SIN1(S1+K)
        SOUT1(S2+K) = SIN1(S2+K)
       WRITE(NHSTRY,*)'S1M,S01M= ',SIN1(S1+K),SOUT1(S1+K)
       WRITE(NHSTRY, *)'SIC, SO1C= ', SIN1(S2+K), SOUT1(S2+K)
 200 CONTINUE
С
С
  *******************
С
С
С
         COPY ALL OF THE SOLUBLE NON-CARBON-CONTAINING COMPOUNDS
С
         TO THE OUTLET STREAM.
  С
С
С
     THESE COMPONENTS WILL NOT BE CONVERTED.
      SOUT1(S1+NH2O) = SIN1(S1+NH2O)
      SOUT1(S1+NH2SO) = SIN1(S1+NH2SO)
      SOUT1(S1+NN2) = SIN1(S1+NN2)
```

```
SOUT1(S1+NCO2) = SIN1(S1+NCO2)
     SOUT1(S1+NO2) = SIN1(S1+NO2)
     SOUT1(S1+NNO) = SIN1(S1+NNO)
     SOUT1(S1+NNO2) = SIN1(S1+NNO2)
     SOUT1(S1+NNH3) = SIN1(S1+NNH3)
     SOUT1(S1+NCSL) = SIN1(S1+NCSL)
     SOUT1(S1+NCNUT) = SIN1(S1+NCNUT)
     SOUT1(S1+NWNUT) = SIN1(S1+NWNUT)
     SOUT1(S1+NSO2) = SIN1(S1+NSO2)
     SOUT1(S1+NH2S) = SIN1(S1+NH2S)
С
С
  *************************
С
С
С
         SET THE METHANE YIELD
С
  С
C
     CH4MAX = 350.
C CH4MAX IS THE MAXIMUM YIELD OF METHANE (L CH4/KG COD CONVERTED)
C AND WAS PROVIDED BY J. RUOCCO
     Write(NHSTRY,101)Real(1),Real(2),Real(3),Real(4),Real(5)
   Format(' WWT Input Parameters',/,
          ' COD Converted in Anerobic:
                                      ',g12.5,/,
          ' Methane Yield, Kg CH4/Kg COD: ',g12.5,/,
          ' Cell Yield, Kg Cellmass/Kg COD: ',g12.5,/,
          'Final Concentration of CH4: ',g12.5,/,
          ' Frac of soluble SO4 converted: ',g12.5)
    CODCON = REAL(1)
    CELLY = REAL(3)
     CODREM = 1.0 - CODCON - CELLY
     CH4YLD = REAL(2)
C CODCON IS THE COD CONVERTED IN ANAEROBIC DIGESTION
C CELLY IS THE CELL YIELD KG CELL MASS/KG COD CONVERTED
C CODREM IS THE COD REMAINING AFTER ANAEROBIC DIGESTION
C CH4YLD IS THE METHANE YIELD KG CH4/KG COD CONVERTED
  С
С
С
        MODIFY THE METHANE YIELD BASED ON TEMP
C
  C THE FOLLOWING METHANE YIELD RELATIONSHIP BASED ON THE COD
C CONVERTED WAS OBTAINED FROM J. RUOCCO.
     WRITE(NHSTRY, *)'CODTOT, BODTOT=', CODTOT, BODTOT
     IF (CODCON .GE. 0.9) THEN
       CODCON = 0.9
       CH4OUT = CODTOT*CH4MAX*CH4YLD*CODCON
     ELSE IF (CODCON .GT. 0.6) THEN
       CH4OUT = CODTOT*CH4MAX*CH4YLD*(1.0 + (CODCON - 0.9)*2.0)
       CH4OUT = CODTOT*CH4MAX*CH4YLD*(0.4 + (CODCON - 0.6)*5.0)
C
  *******************
С
С
```

```
CALCULATE METHANE PRODUCED
С
  С
С
     CONVERT L OF METHANE TO KG-MOL (SI UNITS)
     RHO = 1.0/(82.05*298.16)
C RHO IS THE DENSITY OF CH4 AT 1 ATM AND 25C (298 K)
  AND HAS UNITS OF KG MOL/L
  8.314 IS THE UNIVERSAL GAS CONSTANT (ATM-L/KG-MOL K)
     CH4PRO = CH4OUT*RHO/3600.
C 3600 SEC/HR
     CH4MAS = CH4PRO*C4MW
C CH4MAS IS THE MASS FLOWRATE (KG/S) OF METHANE FROM THE SYSTEM
      WRITE(NHSTRY, *)'CH4PRO=',CH4PRO
C CH4PRO IS THE AMOUNT OF METHANE PRODUCED KG-MOL/S
     SOUT1(S1+NCH4) = (SIN1(S1+NCH4))*CODREM + CH4PRO
C
  ************************
C
С
С
         CALCULATE CELL MASS PRODUCED
С
  ******************
С
C CELLY IS THE CELL YIELD IN KG/KG COD CONVERTED
     CELLM = CELLY*CODTOT*CH4YLD*CODCON
C CONVERT CELLS (KG/HR) TO KG-MOL/S
C
     CELLS = CELLM/(3600*CMW)
     SOUT1(S2+NBIOM) = SIN1(S2+NBIOM) + CELLS
C Adding Cell mass to the CISOLID substream and removing Mass from MIXED
     SOUT1(S2+NCC+1) = SOUT1(S2+NCC+1) + SOUT1(S2+NBIOM)
     SOUT1(S1+NCC+1) = SOUT1(S1+NCC+1) - SOUT1(S2+NBIOM)
C
  *************************
С
С
С
         CALCULATE SOLUBLE C-CONTAINING COMPOUNDS LEFT
С
  SOUT1(S1+NGLUC) = CODREM*SIN1(S1+NGLUC)
     SOUT1(S1+NXYLO) = CODREM*SIN1(S1+NXYLO)
     SOUT1(S1+NUNKN) = CODREM*SIN1(S1+NUNKN)
     SOUT1(S1+NSOLS) = CODREM*SIN1(S1+NSOLS)
     SOUT1(S1+NARAB) = CODREM*SIN1(S1+NARAB)
     SOUT1(S1+NGALA) = CODREM*SIN1(S1+NGALA)
     SOUT1(S1+NMANS) = CODREM*SIN1(S1+NMANS)
     SOUT1(S1+NGLUO) = CODREM*SIN1(S1+NGLUO)
     SOUT1(S1+NCELB) = CODREM*SIN1(S1+NCELB)
     SOUT1(S1+NXYLG) = CODREM*SIN1(S1+NXYLG)
     SOUT1(S1+NMANO) = CODREM*SIN1(S1+NMANO)
     SOUT1(S1+NGALO) = CODREM*SIN1(S1+NGALO)
     SOUT1(S1+NARAO) = CODREM*SIN1(S1+NARAO)
     SOUT1(S1+NACEO) = CODREM*SIN1(S1+NACEO)
     SOUT1(S1+NXYLL) = CODREM*SIN1(S1+NXYLL)
     SOUT1(S1+NETOH) = CODREM*SIN1(S1+NETOH)
     SOUT1(S1+NFURF) = CODREM*SIN1(S1+NFURF)
```

```
SOUT1(S1+NHMF) = CODREM*SIN1(S1+NHMF)
     SOUT1(S1+NLACI) = CODREM*SIN1(S1+NLACI)
     SOUT1(S1+NAACI) = CODREM*SIN1(S1+NAACI)
     SOUT1(S1+NGLYC) = CODREM*SIN1(S1+NGLYC)
     SOUT1(S1+NSUCC) = CODREM*SIN1(S1+NSUCC)
     SOUT1(S1+NDENA) = CODREM*SIN1(S1+NDENA)
     SOUT1(S1+NOIL) = CODREM*SIN1(S1+NOIL)
     SOUT1(S2+NNH4A) = CODREM*SIN1(S2+NNH4A)
C Subtracting converted NH4ACET (Not Remaining) from CISOLID substream and
C adding Mass to MIXED
C
     SOUT1(S2+NCC+1) = SOUT1(S2+NCC+1) - (SIN1(S2+NNH4A)
                  - SOUT1(S2+NNH4A))
     SOUT1(S1+NCC+1) = SOUT1(S1+NCC+1) + (SIN1(S2+NNH4A)
                   - SOUT1(S2+NNH4A))
CC
  C
С
С
         CALCULATE MASS OF REACTABLE SUBSTANCES INTO DIGESTOR
С
  С
    REACIN = SIN1(S1+NGLUC)*GMW + SIN1(S1+NXYLO)*XYMW +
             SIN1(S1+NUNKN)*UMW + SIN1(S1+NSOLS)*SMW +
            SIN1(S1+NARAB)*AMW + SIN1(S1+NGALA)*GAMW +
            SIN1(S1+NMANS)*WAMW + SIN1(S1+NGLUO)*GOMW +
            SIN1(S1+NCELB)*CBMW + SIN1(S1+NXYLG)*XGMW +
            SIN1(S1+NMANO)*WOMW + SIN1(S1+NGALO)*GLMW +
    7
            SIN1(S1+NARAO)*AOMW + SIN1(S1+NACEO)*AEMW +
            SIN1(S1+NXYLL)*XLMW + SIN1(S1+NETOH)*EMW +
            SIN1(S1+NFURF)*FMW + SIN1(S1+NHMF)*HMW +
            SIN1(S1+NCH4)*C4MW + SIN1(S1+NLACI)*ALMW +
    1
            SIN1(S1+NAACI)*AAMW + SIN1(S1+NGLYC)*GYMW +
             SIN1(S1+NSUCC)*SUMW + SIN1(S1+NDENA)*DMW +
             SIN1(S1+NOIL)*WLMW + SIN1(S2+NNH4A)*AMAMW
С
  CALCULATE THE MASS THAT REACTED
С
     REACTD = (1.-CODREM)*REACIN
С
C
  ************************
С
С
        CALCULATE CO2 PRODUCTION
С
С
  С
С
  CALCULATE THE AMOUNT AVAILABLE FOR CO2 PRODUCTION
С
     CO2AVL = REACTD - (CELLM/3600.) - CH4MAS
С
     WRITE(NHSTRY, *)'CO2AVL=',CO2AVL
C CALCULATE THE FINAL FLOWRATE OF CO2 OUT
     CO2OUT = CO2AVL/CO2MW
     WRITE(NHSTRY, *)'CO2OUT=',CO2OUT
C DETERMINE THE MOLE FRACTION OF CO2 POTENTIALLY FORMED
    CO2FRC = CO2OUT/(CO2OUT + CH4PRO)
    THE FINAL CONCENTRATION OF CH4 MAY BE SET
```

```
CH4FIN = REAL(4)
     CO2FIN = CH4PRO/CH4FIN - CH4PRO
     WRITE(NHSTRY, *) 'CO2FIN= ',CO2FIN
C CHECK TO SEE IF THE CO2 CALCULATED BY SETTING THE VOLUMETRIC
C OUTLET IS GREATER THAN THE POTENTIAL FORMED. IF SO, THEN SET
C THE CO2 OUT EQUAL TO THE MAXIMUM POTENTIAL. IF NOT, SET THE
C CO2 FORMED EQUAL TO THE VOLUMETRIC SPECIFICATION AND MAKE
C WATER WITH THE REMAINING.
     IF (CO2FIN .GT. CO2OUT) THEN
        SOUT1(S1+NCO2) = CO2OUT + SIN1(S1+NCO2)
        SOUT1(S1+NCO2) = CO2FIN + SIN1(S1+NCO2)
        SOUT1(S1+NH2O) = (CO2OUT-CO2FIN)*(CO2MW/WMW)+SOUT1(S1+NH2O)
     END IF
С
С
   AS A CHECK, CALCULATE THE MOLE FRACTION CO2 VS CH4
С
   AND WRITE OUT THE RESULTS.
\mathcal{C}
     CO2FRC = SOUT1(S1+NCO2)/(SOUT1(S1+NCO2) + SOUT1(S1+NCH4))
     CH4FRC = SOUT1(S1+NCH4)/(SOUT1(S1+NCO2) + SOUT1(S1+NCH4))
C
     WRITE(NHSTRY,*)'CO2FRC,CH4FRC=',CO2FRC,CH4FRC
С
С
  *******************
С
С
С
          CALCULATE H2S PRODUCTION
С
  С
С
C
 ASSUME H2S WILL BE FORMED FROM ALL SOLUBLE SO4-CONTAINING COMPOUNDS
C
      SACON = 0.347
C SACON IS THE SULFURIC ACID CONVERSION TO H2S (LB H2S/LB H2SO4)
     ASCON = 0.273
C ASCON IS THE AMMONIUM SULFATE CONVERSION TO H2S (LB H2S/LB (NH4)2SO4)
С
      CEFF = REAL(5)
С
      CEFF = FRACTION OF SOLUBLE SO4-CONTAINING COMPOUNDS CONVERTED
С
     H2SFRM = SACON*SIN1(S1+NH2SO)*SAMW*CEFF +
             ASCON*SIN1(S2+NNH4S)*ASMW*CEFF
C H2SFRM IS THE AMOUNT OF H2S FORMED (KG/S)
     H2SMOL = H2SFRM/HSMW
C H2SMOL IS THE H2S FORMED ON A MOLE BASIS (KG-MOL/S)
     WRITE(NHSTRY,*)'H2SFRM,H2SMOL=',H2SFRM,H2SMOL
C ASSUME WHAT IS NOT CONVERTED TO H2S GOES TO WATER
C
     WATERM = (1-SACON)*SIN1(S1+NH2SO)*SAMW*CEFF +
             (1-ASCON)*SIN1(S2+NNH4S)*ASMW*CEFF
     WATMOL = WATFRM/WMW
     WRITE(NHSTRY,*)'WATFRM,WATMOL=',WATFRM,WATMOL
C
     SOUT1(S1+NH2SO) = (1.0-CEFF)*SIN1(S1+NH2SO)
     SOUT1(S2+NNH4S) = (1.0-CEFF)*SIN1(S2+NNH4S)
C CALCULATE THE OUTLET FLOWRATES
     SOUT1(S1+NH2S) = SOUT1(S1+NH2S) + H2SMOL
     SOUT1(S1+NH2O) = SOUT1(S1+NH2O) + WATMOL
```

С

RETURN END

Attachment 3 Wastewater Treatment Calculation Spreadsheets

Aerobic Digestion Energy Balance Calculations

Cell Mass MW 23.238 % Conversion to Cell Mass 30.00% Cell Mass HHV 9,843 % Total Conversion 90.00% % Conversion to CO2/H2O 60.00%

Basis: 1 lb component -----> 1 lb cell mass

			Stoich. Factor		HHV	HHV	
	COD		MWComp/	HHV	Product	Decrease	
Mixed SS Component	kg/kg	MW	MW Cells	(Btu/lb)	(Btu/lb)	(Btu/lb)	
Glucose/Mannose/Galactose	1.07	180.16	7.7528	6,729	2952.9	3775.8	OK
Xylose/Arabinose	1.07	150.132	6.4606	6,739	2952.9	3786.31	OK
Xylitol	1.22	152.15	6.5475	7,458	2952.9	4504.7	OK
Soluble Solids	0.711	16.5844	0.7137	14,360	2952.9	11407.35	OK
Soluble Unknown	1.07	15.0134	0.6461	6,201	2952.9	3248.44	OK
C-6 Oligomers	1.07	162.115	6.9763	6,719	2952.9	3766.4	OK
C-5 Oligomers	1.07	132.0942	5.6844	6,729	2952.9	3775.9	OK
Cellobiose	1.07	342.2398	14.7276	8,306	2952.9	5352.6	OK
Furfural	1.67	96	4.1312	9,107	2952.9	6153.7	OK
HMF	1.52	126.1116	5.4270	10,296	2952.9	7343.1	OK
Acetic Acid	1.07	60	2.5820	6,463	2952.9	3510.2	OK
Lactic Acid	1.07	90	3.8730	6,470	2952.9	3516.7	OK
Succinic Acid	0.95	118	5.0779	5,483	2952.9	2530.5	OK
Glycerol	1.22	92	3.9590	7,720	2952.9	4767	OK
Oil	2.89	282	12.1353	17,045	2952.9	14091.7	OK
Ethanol	2.09	46	1.9795	12,762	2952.9	9809.1	OK

Anaerobic Digestion Yields

CH4 Yield

350 I/kg COD converted 0.2214793 kg CH4/kgCOD converted at 35 C

0.03 kg/kg COD converted Cell Yield

				Potential						
	COD	CH4	Cell Mass	CO2	CH4	CO2	CH4	CO2	CH4	CO2
Compound	kg/kg	kg	kg	kg	Wt Frac	Wt Frac	Moles	Moles	Molar Frac	Molar Frac
Glucose, Xylose, etc.	1.07	0.237	0.032	0.731	0.245	0.755	0.015	0.017	0.463	0.537
Furfural	1.67	0.370	0.050	0.580	0.389	0.611	0.023	0.014	0.625	0.375
HMF	1.52	0.337	0.046	0.618	0.353	0.647	0.021	0.015	0.589	0.411
Ethanol	2.09	0.463	0.063	0.474	0.494	0.506	0.029	0.012	0.716	0.284
Lactic Acid	1.07	0.237	0.032	0.731	0.245	0.755	0.015	0.017	0.463	0.537
Acetic Acid	1.07	0.237	0.032	0.731	0.245	0.755	0.015	0.017	0.463	0.537
Glycerol	1.22	0.270	0.037	0.693	0.280	0.720	0.017	0.016	0.508	0.492
Succinic Acid	0.95	0.210	0.029	0.761	0.217	0.783	0.013	0.018	0.425	0.575
Xylitol	1.22	0.270	0.037	0.693	0.280	0.720	0.017	0.016	0.508	0.492

Attachment 4 COD Data and Projected Calculations

Projected COD Calculation Comparison with Actual Data

Compound	Concentration (mg/L)	COD Factor kg O2/kg comp.	Estimated COD kg O2
Cellobiose (incl. w/glucose)	0	1.07	0
Glucose	6,140	1.07	6,570
Galactose	2,170	1.07	2,322
Mannose	4,420	1.07	4,729
Xylose	2,840	1.07	3,039
Arabinose	700	1.07	749
Ethanol	0	2.09	0
Cell Mass*	1,800	0	0
Glycerol	1,020	1.22	1,244
Xylitol	950	1.22	1,159
Acetic Acid	2,980	1.07	3,189
Lactic Acid	3,330	1.07	3,563
Succinic Acid	1,930	0.95	1,834
		Total	28,398
		Avg. COD measured	27,199

 $^{^{\}star}$ Cell mass is insoluble and so it has an assumed COD of 0 $^{\circ}$

Attachment 5

Calculation Flow Diagram

moles

CO2(B) = 0.013 moles CH4/0.75 - 0.013 = 0.0043

New CO2 = 0.75 * 0.013 = 0.033 moles of CO2

Remainder H2O, 1 - 0.143 - 0.7549 = 0.1021 kg H2O

CO2(A) < CO2(B) N, Change CO2

0.098 * 44 = 0.143 kg CO2

Oct ober, 1998

0.036/0.044 = 82% CH4

___. __.

B) Set CH4 = 75%

moles

0.008/0/044 = 18% CO2 (A)

CO2 (B) = 0.036 Moles CH4/.75 - 0.036 = 0.012

Appendix H

Evaporator Syrup Disposition

EVALUATION OF ALTERNATE EVAPORATOR SYRUP DISPOSITIONS 8/10/98Rev 2

BASIS

From ASPEN model, 7/22/98, R9805M, stream 531:

Total Flow 81023 kg/hr, 356 gpm (was 260 gpm prior to Delta T input)

Insolubles 1.8% Solubles 5.9%

Temp. 62 °C

Pressure 0.21 atmos. ??

Soluble Composition:

Ethanol 1 kg/hr

Water 69910 Xylose 393

Arabinose 315

Other sugars 1625

Cellobiose 213

Glucose Oligomers 1025 Xylose Oligomers 556 Acetic Acid 1456 Sulfuric Acid 246

Furfural 27 HMF 244

Insolubles Composition:

Cellulose 54 kg/hr

Xylan 12 Other sugar polymers 2

Biomass 397

Zymo 397 Lignin 346

Assumptions

• Note that all of the following costs are for incremental changes from a base case and are not the total installed cost of the facilities. In the base case there is no defined destination for the syrup and there are no capital or operating expenses for the handling and disposal of the syrup.

- In calculating the capitalized costs, operating costs are taken to equal capital costs in three to five years. For example, 3 to 5 years of fuel costs of \$1000/yr are equivalent to \$3000 to \$5000 in capital cost on the first day.
- Delta-T has evolved a design of the evaporator and distillation systems to include a 3-effect evaporator that , presumably, uses the available heat from the distillation system. The reason that the syrup stream (Stream 531) is now only 7.7% solids concentration is that this is the maximum concentration available from "free" heat with a 3-effect system.
- Flow rate for Stream 531 is therefore larger due to the lower concentration. The stream is now about 356 GPM rather than 260 GPM.
- Corn-to-ethanol designs that maximize syrup concentration to about 75% solids are not "achievable" using the Delta-T design.
- There is no proposed use of the syrup as a product stream. Merrick proposes design alternatives of syrup use in the existing lignin fired boiler for:

Case 1 fuel sprayed on lignin boiler fuel - as is
Case 2 additional evaporation (separate step or 4th effect) to fuel value

zero
Case 3 use of "free" low level heat with additional evaporation to fuel =

zero

or treatment as wastewater:

Case 4 Treatment of the syrup stream in the waste water unit

- A. Syrup has separate waste water unit from other plant waste water streams due to its high (75,000 mg/L) COD
- B. Syrup and other waste waters have separate anaerobic treaters but share the aerobic treating unit
- C. Syrup and other waste waters are blended upstream of waste water treating.

(Please see attached block schematic.)

Case 5 Deletion of the 2nd and 3rd effects of the evaporator (downstream of the centrifuge) with the more dilute "syrup" sent to anaerobic/aerobic treatment.

Case 6 All three evaporator effects are deleted. Distillation bottoms is centrifuged (possibly other separation devices ?) to remove lignin as a cake having the same water content as the current design. Seventy five percent of the liquor stream goes to anaerobic water treat and the

NREL

Biomass to Ethanol Waste Water Treatment

Octo

remaining 25% is recycled (possibly after dilution treated water).

with

- The average heat of combustion of the solids in the syrup was taken to be 8000 BTU/lb. Water was vaporized at atmospheric pressure in calculating net heating value of the stream.
- The following utility costs are used in the evaluation:
 - Fuel gas = \$2.00 per mmBTU
 - Fresh water = \$2.00 per 1000 gallons
 - Electric power = \$0.042 per KWH
 - Sludge disposal = \$0.015 per pound

CASE 1

Leave the evaporator as it is currently designed in the model. Spray the syrup on the lignin and burn it in the boiler. Since syrup is largely water, additional water will need to be made up compared to cases where this water is reclaimed and recycled.

1. Incremental Capital Cost: \$200k spraying equipment.

2. Incremental Fuel Cost: \$88,440 / yr

3. Incremental Water Costs: \$342,150 / yr

4. Incremental Power Costs: \$0

5. Incremental Sludge Costs \$0

CASE 2

Add additional evaporating capacity either as a fourth effect to the current evaporator (greater vacuum) or as a stand alone single effect evaporator. Assume each of these options is roughly equivalent in capital cost. Increase the concentration of the solids in the syrup until the heat of combustion of the solids is exactly equal to the heat required to evaporate all of the remaining water in the syrup stream. More net heat is available in the boiler (more steam produced) but this is offset by increased heat use in the evaporator(s). Assume that Delta T used all of the available waste heat in the evaporator and "new" heat is at the cost of fuel gas.

1. Incremental Capital Cost: \$1,400k + 200k = \$1,600k

NREL Biomass to Ethanol Waste Water Treatment

Biomass to Ethanol

2. Incremental Fuel Cost: \$143,425

3. Incremental Water Costs: \$324,180

4. Incremental Power Costs \$0

5. Incremental Sludge Costs \$0

CASE 3

Assume that there is additional low temperature level heat available from somewhere in the process. Appendix A of the report indicates that this likely. For example, distillation reflux condensers are large heat loads containing heat which might be useful here. Add evaporation capital cost and assume that syrup will be concentrated until the heat of combustion of the syrup exactly matches the heat to vaporize the water in the syrup.

1. Incremental Capital Cost: \$1,400 + \$200 = \$1,600

2. Incremental Fuel Cost: \$0

3. Incremental Water Costs: \$324,180

4. Incremental Power Costs \$0

5. Incremental Sludge Costs \$0

CASE 4

With evaporation remaining as it is currently designed route the syrup to water treating in one of the ways described below. (See attached block schematic)

Subcase AIn this case syrup containing 75,000 mg/L COD is processed in a separate train of anaerobic and aerobic equipment. The remainder of the waste water waste) which contains only 16,000 mg/L COD has its own train of equipment.

1. Incremental Capital Cost: \$4,238K

2. Incremental Fuel Cost: (\$272,500)

Merrick & Company

NRELBiomass to Ethanol
Waste Water Treatment

Octo

3. Incremental Water Costs: \$0

4. Incremental Poer Costs \$460,020

5. Incremental Sludge Costs \$72,436

Subcase B In this case the syrup and the mixed waste have separate anaerobic treating equipment but share the aerobic treating.

1. Incremental Capital Cost: \$4,159K

2. Incremental Fuel Cost: (\$272,500)

3. Incremental Water Costs: \$0

4. Incremental Power Cost: \$460,500

5. Incremental Sludge Cost: \$72,436

Subcase C In this case syrup and mixed waste are blended upstream of waste water treatment and therefore share all treating equipment.

1. Incremental Capital Cost: \$3,390K

2. Incremental Fuel Cost: (\$272,500)

3. Incremental Water Costs: \$0

4. Incremental Power Cost: \$460,500

5. Incremental Sludge Cost: \$72,436

In addition to capital cost the following operating cost factors must be considered in making the water treating process evaluations.

- The CO₂/Methane gas produced in anaerobic treatment has a positive fuel value equal to \$2.00 per mmBTU.
- The aerobic blower/compressor electric power consumption should be valued at \$0.042 per KWH.
- Treated water is recycled to the process and therefore backs out fresh water. The recycled water should be valued at \$2.00 per 1000 gallons.
- Aerobic sludge has a cost for disposal of 1.5 cents per pound.

CASE 5

This case considers deleting the 2nd and 3rd effects of the evaporator and processing the dilute waste water directly in anaerobic and aerobic treatment. The first effect was not deleted because the size of the expensive centrifuge(s) would be drastically increased. Feed to water treating is increased by 600 gpm over Case 1 because water which was backset from the 2nd and 3rd effects must now be processed in water treating.

1. Incremental Capital Cost: \$1,942K

2. Incremental Fuel Cost: (\$272,500)

3. Incremental Water Costs: \$0

4. Incremental Power Cost: \$652,460

5. Incremental Sludge Cost: \$96,576

CASE 6

This case considers complete elimination of the evaporator. Distillation bottoms would be processed in centrifuges or similar separation devices. Cake, having the same water content as the current design would be the lignin stream to the boiler burner. The centrifuge liquor would be split with 25% recycle to the process with treated water and 75% sent directly to anaerobic treating.

1. Incremental Capital Cost: \$27,551K

2. Incremental Fuel Cost: (\$272,500)

3. Incremental Water Costs: \$0

4. Incremental Power Cost: \$1,545K

5. Incremental Sludge Cost: \$368,841

Oct o

OVERALL COMPARISON:

			Operating Costs		
	Capitalized Capital \$ 5 Year	<u>Fuel S</u>	Water \$ Sludge	Power \$	Electric Total \$ * 3 Year
Case 1	\$200K \$88,440	\$342,150	\$0	\$0	\$1,492K \$2,353K
Case 2 \$3,938k	\$1,600K K	\$143,425	\$324,180	\$0	\$0 \$3,003K
Case 3	\$1,600K \$3,221K	\$0	\$324,180	\$0	\$0 \$2,573K
Case 4					
A	\$4,238K (\$272,50	00) \$0	\$72,436	\$460,020	\$5,017K\$5,538K
В	\$4,159K (\$272,50	•	\$72,436	\$460,500	\$4,940K \$5,460K
C	\$3,390K (\$272,50	•	\$72,436	\$460,500	\$4,171K\$4,692K
Case 5	\$1,942K (\$272,50	00) \$0	\$96,576	\$652,460	\$3,312K\$4,225K
Case 6	\$27,551K \$35,758K	(\$272,500)	\$0	\$368,841	\$1,545K\$32,475K

 $^{^*}$ For example, the expenditure of \$1000 per year in operating cost for 3 years or the expenditure of \$3000 additional capital in the first year are equivalent.

CONCLUSION:

From the comparison made above, Case 1 is the most economical choice for evaporator syrup treatment. In Case 1 the fuel is sprayed onto the lignin boiler fuel. It is the least costly in both the three and five year capitalized total. Case 1 would be the best and most cost-effective process to use in the treatment of the evaporator syrup.

IREL SOF	TWOOD	EVAPORATOR	SYRUP	7/23/98
		BTU TO	NET HEAT	
PERCENT	COMB. BTU	EVAP. WATER	OF COMB.	
SOLIDS (1)	PER 100#	PER 100#	BTU/100lbs ^{.(2)}	
1	8000	96060	-89271.7	
2	16000	95089	-81513.4	
3	24000	94119	·	
4	32000	93149	-73 7 55.1	
_	40000	92179	-65996.8	
 6	48000	91208	-58238.5	
	56000	90238	-50480.2	
8	64000	89268	-42721.9 34063.6	
9	72000	88297	-34963.6	
10	80000	87327	-27205.3	
11	88000	86357	-19447	
12	96000	85386	-11688.7	
13	104000	84416	-3930.4	- BREAK EUEN
14	112000	83446	3827.9	
15	120000	82476	11586.2	
16	128000	81505	19344.5	
17	136000	·	27102.8	
18	144000	80 5 35 79 5 65	34861.1	
19	152000	78594	42619.4	
20	160000	77624	50377.7	
21	168000	76654	58136	
22	176000	75683	65894.3	
23	184000	74713	73652.6	
24	192000	73743	81410.9	
25	200000	72773	89169.2 96927.5	
200000				
180000				
160000				
140000			A STATE OF THE STA	
120000		and the same of th		COMB. BTU PER 100#
100000				
80000	in a second second			BTU TO EVAP. WATER PER
60000			The state of the s	
40000	A STATE OF THE PARTY OF THE PAR		eric Vita Tu	
20000				
۰ ــــ	0 4 9 0	0 1 4 9	18 20 22 24	
	le and insoluble			
Both solub	e and insomor	3 .		

Ethanol Production Process Engineering Analysis

NREL Year 2000 Case Co-Current Pretreatment & Enzymatic Hydrolysis

Syrup to Burner

All Values in 1995\$

Ethanol Production Cost \$1.37

Ethanol Production (MM Gal. / Year) 54.5 Ethanol Yield (Gal / Dry Ton Feedstock) 74 Feedstock Cost \$/Dry Ton 15

Capital Costs	;	Operating Costs (cents/gal ethanol)
Feed Handling	\$4,900,000	Feedstock 21.3
Pretreatment/Detox	\$25,300,000	CSL 5.0
SSCF	\$14,300,000	Denaturant 3.9
Cellulase	\$11,600,000	Other Raw Materials 14.7
Distillation	\$12,200,000	Waste Disposal 1.3
WWT	\$12,300,000	Electricity -3.3
Storage	\$1,800,000	Fixed Costs 21.3
Boiler/Turbogen	\$31,400,000	Capital Recovery 72.4
Utilities	\$8,500,000	
Total Equipment Cost	\$122,300,000	Operating Costs (\$/yr)
		Feedstock \$11,600,000
Added Costs	\$89,800,000	CSL \$2,800,000
(% of TEC)	42%	Denaturant \$2,100,000
		Other Raw Matl. Costs \$8,000,000
Total Project Investment	\$212,100,000	Waste Disposal \$700,000
		Electricity Credit -\$1,800,000
		Fixed Costs \$11,600,000
		Capital Recovery \$39,500,000
		Cap. Recovery Factor 0.186
Theoretical Yields	Ethanol	•
	MM Gal/year	
Cellulose	59.3	
Xylan	27.1	
Arabinan	1.1	
Mannan	5.5	
Galactan	0.3	
Total Maximum (MM Gal/yr)	93.3	
Maximum Yield (Gal/ton)	127.2	
Current Yield (Actual/Theor)		

Ethanol Production Process Engineering Analysis

NREL Year 2000 Case Co-Current Pretreatment & Enzymatic Hydrolysis

Syrup to WWT

All Values in 1995\$

Ethanol Production Cost \$1.43

Ethanol Production (MM Gal. / Year) 54.5 Ethanol Yield (Gal / Dry Ton Feedstock) 74 Feedstock Cost \$/Dry Ton 15

Capital Costs		Operating Costs (cents/gal ethanol)
Feed Handling	\$4,900,000	Feedstock 21.3
Pretreatment/Detox	\$25,300,000	CSL 5.0
SSCF	\$14,300,000	Denaturant 3.9
Cellulase	\$11,600,000	Other Raw Materials 15.7
Distillation	\$12,200,000	Waste Disposal 1.4
WWT	\$17,300,000	Electricity -0.1
Storage	\$1,800,000	Fixed Costs 21.7
Boiler/Turbogen	\$29,400,000	Capital Recovery 74.1
Utilities	\$8,700,000	
Total Equipment Cost	\$125,600,000	Operating Costs (\$/yr)
		Feedstock \$11,600,000
Added Costs	\$91,900,000	CSL \$2,800,000
(% of TEC)	42%	Denaturant \$2,100,000
		Other Raw Matl. Costs \$8,500,000
Total Project Investment	\$217,500,000	Waste Disposal \$800,000
		Electricity Credit -\$100,000
		Fixed Costs \$11,800,000
		Capital Recovery \$40,400,000
		Cap. Recovery Factor 0.186
Theoretical Yields	Ethanol	,
	MM Gal/year	
Cellulose	59.3	
Xylan	27.1	
Arabinan	1.1	
Mannan	5.5	
Galactan	0.3	
Total Maximum (MM Gal/yr)	93.3	
Maximum Yield (Gal/ton)	127.2	
Current Yield (Actual/Theor)	58%	

Ethanol Production Process Engineering Analysis

NREL Year 2000 Case Co-Current Pretreatment & Enzymatic Hydrolysis

Syrup to Nowhere

All Values in 1995\$

Ethanol Production Cost \$1.37

Ethanol Production (MM Gal. / Year) 54.5 Ethanol Yield (Gal / Dry Ton Feedstock) 74 Feedstock Cost \$/Dry Ton 15

Capital Costs		Operating Costs (cents/gal ethanol)
Feed Handling	\$4,900,000	Feedstock 21.3
Pretreatment/Detox	\$25,300,000	CSL 5.0
SSCF	\$14,300,000	Denaturant 3.9
Cellulase	\$11,600,000	Other Raw Materials 14.6
Distillation	\$12,200,000	Waste Disposal 1.3
WWT	\$12,300,000	Electricity -0.5
Storage	\$1,800,000	Fixed Costs 21.0
Boiler/Turbogen	\$28,900,000	Capital Recovery 70.8
Utilities	\$8,300,000	
Total Equipment Cost	\$119,700,000	Operating Costs (\$/yr)
		Feedstock \$11,600,000
Added Costs	\$88,100,000	CSL \$2,800,000
(% of TEC)	42%	Denaturant \$2,100,000
		Other Raw Matl. Costs \$8,000,000
Total Project Investment	\$207,800,000	Waste Disposal \$700,000
		Electricity Credit -\$200,000
		Fixed Costs \$11,400,000
		Capital Recovery \$38,600,000
		Cap. Recovery Factor 0.186
Theoretical Yields	Ethanol	·
	MM Gal/year	
Cellulose	59.3	
Xylan	27.1	
Arabinan	1.1	
Mannan	5.5	
Galactan	0.3	
Total Maximum (MM Gal/yr)	93.3	
Maximum Yield (Gal/ton)	127.2	
Current Yield (Actual/Theor)	58%	
Current field (Actual/Theor)	50%	

Appendix I

Process Flow Diagrams

Octobe

Appendix J

Waste Water Analysis Results

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Client Sample I.D.

: BF772014-P04

Standard Method

2540 F

Client Project I.D.

: Waste Water Verification

Lab Sample Number Date Sampled

: 98-1609-01 : 04/23/98

Lab Project Number

Date Received

Demand

Settleable Solids

: 04/23/98

: 98-1609

: Liquid Waste

 $27000 \text{ mgO}_2/L$

mI/L

(2.7%)

< 0.1

Analysis	Method	Date <u>Prepared</u>	Date <u>Analyz</u> ed	<u>Result Units</u>
Total Suspended Solids	Standard Method 2540 D	04/27/98	04/27/98	11.0 mg/L
Biochemical Oxygen Demand	EPA 405.1	04/24/98	04/29/98	13,400 pc~ 1 • 63400 mgO2/L 2
Chemical Oxygen	Hach Method 8000	04/24/98	04/24/98	27000

04/24/98

Estimated Value due to underdilution

Do Bo D = 0, 49 63

04/24/98

Vicki - gélgour message, Everguer did re-Run that SAmple. The BOD was 13400 mg Or/L Call By gan have questions /

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Counter - entre

Client Sample I.D. Lab Sample Number

: TiO2 Treatment : 98-1593-02

Client Project I.D.

: Waste Water Verification

Date Sampled

: 04/22/98

Lab Project Number : 98-1593

Date Received

: 04/22/98

Matrix

: Liquid Waste

<u>Analysis</u>	<u>Method</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	<u>Result Units</u>
Total Suspended Solids	Standard Method 2540 D	04/27/98	04/27/98	470 mg/L
Biochemical Oxygen Demand	EPA 405.1	04/23/98	04/28/98	29400 mgO ₂ /L
Chemical Oxygen Demand	Hach Method 8000	04/24/98	04/24/98	54000 mgO ₂ /L (5.4%)
Settleable Solids	Standard Method 2540 F	04/24/98	04/24/98	<0.1 mi/L

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Zelmoer

Client Sample I.D.

: Spent Broth MTX 7F

Client Project ID

Matrix

Waste Water : Verification

Lab Sample Number : 98-1697-01

Lab Project Number : 98-1697

Date Sampled

: 4/30/98

Date Received

: 4/30/98

: Liquid Waste

<u>Analysis</u>	<u>Method</u>	Date <u>Prepared</u>	Date <u>Analyzed</u>	Result	<u>Units</u>
Total Suspended Solids	Standard Method 2540 D	5/4/98	5/4/98	953	mg/L
Biochemical Oxygen Demand	EPA 405.1	5/1/98	5/6/98	18300 (1.8%)	mgO₂/L
Chemical Oxygen Demand	Hach Method 8000	5/6/98	5/6/98	37000 (3.7%)	mgO ₂ /L
Settleable Solids	Standard Method 2540 F	5/7/98	5/7/98	0.47	mI/L

% 1300 = 0,4946

Date 5/8 pages \
From Mack Mensi
Co.
Phone #
Fax#

Analyst

EVERGES FIRE LUMB 1170.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Counter-current

Client Sample I.D.

: Control

Lab Sample Number : 98-1593-01

Client Project I.D.

: Waste Water Verification

Date Sampled

: 04/22/98

Lab Project Number : 98-1593

Matrix

: Liquid Waste

Date Received

: 04/22/98

<u>Analysis</u>	Method	Date <u>Prepared</u>	Date <u>Analyzed</u>	Result Units
Total Suspended Solids	Standard Method 2540 D	04/27/98	04/27/98	630 mg/L
Biochemical Oxygen Demand	EPA 405.1	04/23/98	04/28/98	28800 mgO ₂ /L
Chemical Oxygen Demand	Hach Method 8000	04/24/98	04/24/98	52000 mgO ₂ /L (5.2%)
Settleable Solids	Standard Method 2540 F	04/24/98	04/24/98	<0.1 ml/L

Post-it* Fax Note 7671	Date 4 29 pages 2
To Nick Nagle	From MacV. Mansil
CO/Dept NRET	Co.
Phone #	Phone *
Fax #	Fax #

July 1, 1998

Nick Nagle National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401

Dear Nick,

This letter report and the accompanying invoice serves as the conclusion of activities under NREL procurement P.O. #160809. Sample characterization data were summarized in a previous letter report. Presently, the anaerobic fermentation data and conclusions are described.

The Anaerobic Fermentation Bioassay

It is important to note at the outset that the BMP assay may be useful in determining the potential level of bioconversion which may be possible for a test substrate. This assay may also give indications of a potential for a test substrate to cause inhibition of the anaerobic consortium which would limit or preclude conversion of the test substrate at least under anaerobic conditions. However, the BMP assay is always viewed as a rough cut analysis, with evaluation of continuous anaerobic digestion systems as a natural next step to provide better process data on rates and yields prior to engineering and costing commercial systems. The BMP assay may also be used to determine the effectiveness of treatments aimed at reducing sample toxicity or to improve the potential conversion rates and yields. Several important issues regarding the anaerobic fermentation studies (biochemical methane potential [BMP] assay) must be discussed prior to the interpretation of the data.

The Anaerobic Culture. A robust, diverse, anaerobic culture from a reliable, defined source is important to establishing the best fermentation analysis data. PINNACLE uses anaerobic cultures from anaerobic digesters at local municipal sewage treatment plants as assay and starter cultures as these cultures; 1) see a diverse mixture of organic wastes and therefore the microbial populations are diverse in biodegradative capabilities, 2) receive substantial macro and micronutrients and therefore are not operating under limiting or inhibitory conditions, and 3) are readily available and may be further obtained in large quantities for starting large scale applied systems once sufficient testing data is obtained.

The quantity of test culture used in the anaerobic fermentation assays is maximized to ensure rapid biodegradative results and to reduce the potential negative effects of dilution on the activity

of the culture.

Negative Control. A set of three negative controls were used during anaerobic fermentation studies to account for biogas production due to intrinsic organic matter contained in the anaerobic culture. It should be noted that any active culture used in fermentation tests will produce biogas from intrinsic organic matter unless the culture is first "washed" to remove this material first. For anaerobic fermentation studies, culture washing is detrimental to culture viability due to the potential to introduce oxygen or removal of complex macro and micro-nutrients. Without removing the intrinsic organics contained in the anaerobic culture, it is possible that an added test sample will negatively or positively affect the conversion of the intrinsic culture organics and therefore the background biogas production.

Positive Control. Generally, a positive control is selected which is similar to the composition of the test samples and which can serve as a check on the biodegradative capacity of the anaerobic culture used. The positive control is prepared at similar pH and organic loading to the test samples.

Anaerobic Fermentation Studies

Test Samples. Test sample characterizations were described in a previous letter report and indicated that samples MTX 7F, TiO2, and the Control Hydrolyzate were comparable in mass percent volatile solids (organic content) while sample BF 772014 was nearly 50% more dilute. The pH of all test samples were considerably below pH 7.0 and required adjustment with potassium hydroxide prior to fermentation studies. The analysis of chemical oxygen demand (COD), a measure of oxidizable carbon in the sample, indicated samples TiO2 and the Control Hydrolyzate were similar and the highest of the samples while BF 772014 was the lowest.

Positive Control. For the positive control, a solution of protein hydrolyzate (BactoPeptone, Difco) was used. The use of a protein hydrolyzate sample was envisioned to be relatively close to the composition of the ethanol hydrolyzate samples. The mass percent volatile solids and COD values for the positive control sample were only slightly greater than samples TiO2 and the Control Hydrolyzate.

Pre-Incubation and Startup. Anaerobic fermentation assays were initiated following incubation of the assay bottles for almost four days in order to reduce the background biogas production derived from the intrinsic organics in the anaerobic culture. A single volumetric loading was used (5%) which resulted in varying organic loadings for the different test samples from 1.41 to 2.87 grams of COD per liter of culture due to their individual concentrations.

Results. Immediate and strong biogas production was determined for all test samples as detailed in Figure 1. All samples also demonstrated the majority of the biogas production, hence the sample organic conversion, was complete within 5 to 10 days. The overall level of anaerobic bioconversion for each test sample is shown in Figure 2 based on the individual sample COD loading. A theoretical yield of 350 mL of methane per gram of COD added represents 100% conversion (Owen and McCarty, 1964). Anaerobic conversion data is shown in Table 1, below for the test samples after 26 days of incubation.

Table 1. Anaerobic Fermentation Data and Final Analyses (26 d)

Assay	BF 772014	MTX 7F	TiO2	Control Hyd.	Bacto Peptone
COD Loading (gCOD/bottle)	0.141	0.174	0.279	0.272	0.287
Theoretical CH4 Yield (mL)	49.35	60.90	97.65	95.20	100.45
Actual CH4 Yield (mL)	36.07	75.16	35.39	76.93	83.01
% Anaerobic Conversion	73.09	123.42	36.24	80.81	82.64
Final Biogas Methane (%)	61.40	61.86	64.56	61.43	64.98
Final pH	7.23	7.22	7.24	7.24	7.36

In general, the data indicates that the positive control (BactoPeptone), the Control Hydrolyzate, and BF 772014 resulted in similar levels of bioconversion (70% to 80%). If these samples were to be further incubated to 90 days, the final level of anaerobic conversion based on COD loading would most likely range from 90% to 100% of the theoretical. This slow approach to near complete digestion during the extended incubation period (final 60 days of a 90 day test) represents the adaptation of the anaerobic culture to minor, less common organics in the test samples.

The results found for the positive control, the Control Hydrolyzate and BF 772014 are characteristic of organic wastes which are eminently biodegradable. Test sample TiO2 demonstrated limited biogas production indicating that organics in the sample were only partly biodegradable.

BMP data for NREL sample MTX 7F indicated greater than 100% conversion to the methane endproduct. This may be explained as either inaccurate COD analysis or active enzymes

contained in the sample which are effective in converting recalcitrant intrinsic organics (i.e., polymers) of the seed culture. Table 2. compares initial and final COD analysis for all four NREL test samples and validates the relative accuracy of the assay.

Table 2. Re-Evaluation of NREL Test Sample COD Values

Assay	BF 772014	MTX 7F	TiO2	Control Hyd.
Primary COD Assay (mg/L)	28,267	34,800	55,800	54,400
Secondary COD Assay (mg/L)	26,330	32,330	53,330	55,660
Difference (%)	-6.85	-7.10	-4.43	+2.32

As the accuracy of the test sample COD values are assured, the only plausibly explanation is sample MTX 7F contained active hydrolytic enzymes which served to hydrolyze recalcitrant organics contained in the starter culture. Methods to test this theory and determine the true nature of the anaerobic biodegradation potential for this sample may include a thermal treatment of the sample to inactivate enzymes followed by conducting another BMP assay. In addition, the test sample could be analyzed by standard method for hydrolyzing enzyme activity.

Conclusion

All samples tested demonstrated immediate and strong biogas production. None of the samples tested demonstrated toxicity to the anaerobic culture. The positive control demonstrated predicted effectiveness of the anaerobic starter culture. NREL samples BF 772014 and the Control Hydrolyzate demonstrated conversions similar to that of the positive control and may therefore be considered amenable to anaerobic treatment. NREL sample TiO2 demonstrated reduced conversion effectiveness which is likely due to some level of non-biodegradable organics in the sample. The excessive biogas production resulting in assays performed using NREL sample MTX 7F indicates that additional testing as described above is required to accurately predict the level of conversion possible.

While this data may be used to predict approximate fuel gas production which may result from treating large volumes of the respective organic steams using anaerobic digestion systems, in order to accurately engineer commercial-scale anaerobic systems, additional data from applied, longer-term operation of continuous anaerobic digestion systems should be obtained.

Nick Nagle National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401

Dear Nick,

The four NREL samples received from you were stored under refrigeration until being transferred by cooler to PINNACLE's Research, Development and Testing Center in Stanton, California for analysis and fermentation studies.

Rather than using Avecel as the positive control for these studies, a soluble substrate was used which more closely matches the NREL samples. The positive control substrate used was a Bacto Peptone solution at 4.5% w/v in distilled water. The NREL samples were analyzed on delivery PINNACLE's Testing Center. Total solids (%TS), volatile solids (%VS), and ash analyses were performed in triplicate. Analysis of sample pH were performed after a 2-point standardization of the combination pH probe.

Table 1. Sample Analysis Upon Receipt

Assay	BF 772014	MTX 7F	TiO2	Control Hyd.	Bacto Peptone
% Total Solids	2.73	4.49	5.56	5.20	5.67
% Volatile Solids	87.44	89.86	74.04	82.33	95.67
Mass % Volatile Solids	2.39	4.03	4.12	4.28	5.42
pН	5.39	4.93	5.24	5.36	7.08

As the NREL samples were considerably lower than the pH 7.0 necessary to perform the anaerobic digestibility analysis, they were adjusted to neutrality using a 5% w/v solution of KOH. A 50 mL aliquot of each sample was transferred to a small beaker. The sample was mixed using a magnetic stirrer and the pH monitored during KOH addition. The samples were then analyzed for Chemical Oxygen Demand (COD) using the HACH High Range Plus COD tube assay. All COD assays were performed in triplicate as detailed in Table 2.

Table 2. Sample pH Adjustment and COD Analysis

Assay	BF 772014	MTX 7F	TiO2	Control Hyd.
Initial pH	5.39	4.93	5.24	5.36
mL KOH Added	0.56	1.22	1.11	0.8
Dilution Factor	0.9889	0.9762	0.9783	0.9843
Final pH	7.12	7.08	7.13	7.14
COD (mg/L)	28,267	34,800	55,800	54,400

For comparison, the COD level of the Bacto Peptone positive control was 57,400 mg/L.

Anaerobic Digestibility Assays

The Biochemical Methane Potential (BMP) assay was used to address the biodegradability or toxicity of the NREL samples. The BMP assay employed a mesophilic anaerobic culture obtained from the Terminal Island Sewage Treatment Plant, Terminal Island, CA. This anaerobic culture was assayed prior to use as detailed in Table 3.

Table 3. Analysis of the Terminal Island Anaerobic Culture Used in BMP Assays

Assay	Value
Total Solids	3.11%
Volatile Solids	62.53%
Ash	37.47%
pH	7.43

The BMP assays were prepared in triplicate using serum bottles with a total volume of 162 mL. Using a 25 mL pipette, $100 \text{ mL} \ (\pm 1.8 \text{ mL})$ of active anaerobic culture was transferred to each serum bottle. The headspace of each serum bottle was then flushed with UHP nitrogen for 1-min. prior to closing the bottles with a rubber stopper and an aluminum crimp cap. The serum bottles were incubated at 37°C with shaking (200 rpm) using a Lab-Line Orbit Environ-Shaker.

The serum bottles were incubated for a period of almost 4 days prior to commencing the BMP assay in order to reduce background biogas production from intrinsic organic matter contained in the anaerobic sludge culture. In order to reduce the negative effects of dilution on the BMP anaerobic culture, a standard 5 mL addition of each test substrate was used. This represented roughly a 5% dilution of the anaerobic culture. The actual organic loadings and theoretical methane potential for each substrate varied as per its relative composition as described below in Table 4.

Table 4. BMP Organic Loadings

Sample	Volume Added	Organio	Theoretical	
		gVS/bottle*	gCOD/bottle	Methane Yield (mL)**
Bacto Peptone	5 mL	0.271	0.287	100.45
BF 772014	5 mL	0.118	0.141	49.35
MTX 7F	5 mL	0.197	0.174	60.90
TiO2	5 mL	0.202	0.279	97.65
Control Hydrolyz.	5 mL	0.211	0.272	95.20

^{*} Volatile solids loading corrected for sample dilution during pH adjustment.

^{**} Theoretical methane yields based on COD loading using a yield of 350 mL CH₄ per gram COD added (Owen and McCarty, 1964).

Appendix K

Comparison of CH4 Generation

in WWT Models

To: R. Wooley

From: K. Kadam

Date: September 21, 1998

Subject: Comparison of CH₄ Generation in WWT Models

There is a discrepancy between methane yields from the old Aspen model and that from the new model incorporating the latest WWT as designed by Merrick & Co. Hence, the assumptions of various WWT models regarding biomethanation were compared.

The current biomethanation basis is from the Chem Systems report ("Biomass to Ethanol Process Evaluation," December 1994), page III-31. The original basis for COD-to-CH₄ conversion had come from the CH2MHill report ("Full Fuel Cycle Evaluation of Biomass to Ethanol: Wastewater Treatment System Performance," DEN/197/R/012.51/1, December 10, 1991) page 13, Table 4. These bases are summarized in Table 1. Merrick & Co.'s basis is 0.35 L/g COD, with a molar ratio of CH₄:CO₂::0.75:0.25; however, the numbers for Merrick in Table 1 are calculated from the Aspen output.

Table 1. Conversion of COD to CH₄, CO₂ and Cell Mass

CH ₄ , g/g COD	CO ₂ , g/g COD	Cell Mass, g/g COD
0.5600	0.2400	0.2000
0.2413	0.1607	0.0553
ases		,
New n	odel with sy	rup to WWT
0.1970	0.1801	0.0306
del with syri	ip to burner	off the sheet ²
0.2719	0.2486	0.0355
	9/g COD 0.5600 0.2413 ases New m 0.1970 odel with syrt	g/g COD g/g COD 0.5600 0.2400 0.2413 0.1607 ases New model with sy 0.1970 0.1801 odel with syrup to burner,

¹Model no. R9808N

²Model no. R9808N1

Table 2. CH₄, CO₂ and Cell Mass Yields for Various Cases (2000 tpd Enzyme Process)

	CH ₄ , kg/h	CO ₂ , kg/h	Cell Mass, kg/h	Total, kg/h
		Old n	nodel ¹	
Chem Systems	7237.1	3101.6	2584.7	12923.4
CH2MHill	3118.4	2076.8	714.7	5909.9
	New	model with	syrup to WW	T^2
Chem Systems	6566.9	2814.4	2345.3	11726.6
CH2MHill	2829.6	1884.5	648.5	5362.6
Merrick	2310.2	2112.5	359.0	4781.6
	New model	with syrup	to burner/off	the sheet ³
Chem Systems	2515.1	1077.9	898.3	4491.3
CH2MHill	1083.7	721.7	248.4	2053.9
Merrick	1221.2	1116.7	159.6	2497.4

¹Model no. W9804H

Table 2 shows that the methane yields based on the Chem Systems report are off by a factor of 2–3. This is because the Chem Systems methane yield does not seem to be based on any field experience but rather is calculated from erroneous assumptions. The CH2MHill and Merrick bases give similar results. Hence, the Merrick WWT model seems to be a reasonable approximation of a real-life WWT system for methane yields. However, the big difference in COD-to-CH₄ yields for the two Merrick cases should be explained.

cc: M. Ruth, K. Ibsen

²Model no. R9808N

³Model no. R9808N1